Abstract
Growth of Aeromonas hydrophila serotype O:34 strains at 37 degrees C at low and high osmolarity resulted in changes in the lipopolysaccharide (LPS) and virulence of the strains tested. We previously described the effect of growth temperature on LPS and virulence of these strains (S. Merino et al., Infect. Immun. 60:4343-4349, 1992). The effect of osmolarity can be observed when the cells grow at 37 degrees C but not when they grow at 20 degrees C. Purified LPS from cells cultivated at 37 degrees C and high osmolarity was smooth, while the LPS extracted from the cells cultivated at low osmolarity was rough. Furthermore, the strains were more virulent for fish and mice when they were grown at high osmolarity than when they were grown at low osmolarity and also showed increased extracellular activities when they were grown at high osmolarity. Finally, cells grown at high osmolarity showed better adhesion to HEp-2 cells than the same cells grown at low osmolarity, and furthermore the cells grown at high osmolarity were resistant to the bactericidal activity of nonimmune serum, while the same cells grown at low osmolarity were sensitive.
Full Text
The Full Text of this article is available as a PDF (132.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F., Spudich E. N., Nikaido H. Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J Bacteriol. 1974 Feb;117(2):406–416. doi: 10.1128/jb.117.2.406-416.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benedí V. J., Ciurana B., Tomás J. M. Isolation and characterization of Klebsiella pneumoniae unencapsulated mutants. J Clin Microbiol. 1989 Jan;27(1):82–87. doi: 10.1128/jcm.27.1.82-87.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borrelli S., Hegedus O., Shaw D. H., Jansson P. E., Lindberg A. A. The tetrasaccharide L-alpha-D-heptose1-->2-L-alpha-D-heptose1--> 3-L-alpha-D-heptose1-->(3-deoxy-D-manno-octulosonic acid) and phosphate in lipid A define the conserved epitope in Haemophilus lipopolysaccharides recognized by a monoclonal antibody. Infect Immun. 1995 Sep;63(9):3683–3692. doi: 10.1128/iai.63.9.3683-3692.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darveau R. P., Charnetzky W. T., Hurlbert R. F., Hancock R. E. Effects of growth temperature, 47-megadalton plasmid, and calcium deficiency on the outer membrane protein porin and lipopolysaccharide composition of Yersinia pestis EV76. Infect Immun. 1983 Dec;42(3):1092–1101. doi: 10.1128/iai.42.3.1092-1101.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freij B. J. Aeromonas: biology of the organism and diseases in children. Pediatr Infect Dis. 1984 Mar-Apr;3(2):164–175. [PubMed] [Google Scholar]
- Janda J. M., Guthertz L. S., Kokka R. P., Shimada T. Aeromonas species in septicemia: laboratory characteristics and clinical observations. Clin Infect Dis. 1994 Jul;19(1):77–83. doi: 10.1093/clinids/19.1.77. [DOI] [PubMed] [Google Scholar]
- Kokka R. P., Janda J. M., Oshiro L. S., Altwegg M., Shimada T., Sakazaki R., Brenner D. J. Biochemical and genetic characterization of autoagglutinating phenotypes of Aeromonas species associated with invasive and noninvasive disease. J Infect Dis. 1991 Apr;163(4):890–894. doi: 10.1093/infdis/163.4.890. [DOI] [PubMed] [Google Scholar]
- Kropinski A. M., Lewis V., Berry D. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO. J Bacteriol. 1987 May;169(5):1960–1966. doi: 10.1128/jb.169.5.1960-1966.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lallier R., Bernard F., Lalonde G. Difference in the extracellular products of two strains of Aeromonas hydrophila virulent and weakly virulent for fish. Can J Microbiol. 1984 Jul;30(7):900–904. doi: 10.1139/m84-141. [DOI] [PubMed] [Google Scholar]
- McConnell M., Wright A. Variation in the structure and bacteriophage-inactivating capacity of Salmonella anatum lipopolysaccharide as a function of growth temperature. J Bacteriol. 1979 Feb;137(2):746–751. doi: 10.1128/jb.137.2.746-751.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merino S., Benedí V. J., Tomás J. M. Aeromonas hydrophila strains with moderate virulence. Microbios. 1989;59(240-241):165–173. [PubMed] [Google Scholar]
- Merino S., Camprubi S., Tomás J. M. Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiol Lett. 1990 Mar 15;56(3):239–244. doi: 10.1016/s0378-1097(05)80047-3. [DOI] [PubMed] [Google Scholar]
- Merino S., Camprubí S., Tomás J. M. Characterization of an O-antigen bacteriophage from Aeromonas hydrophila. Can J Microbiol. 1992 Mar;38(3):235–240. doi: 10.1139/m92-040. [DOI] [PubMed] [Google Scholar]
- Merino S., Camprubí S., Tomás J. M. Effect of growth temperature on outer membrane components and virulence of Aeromonas hydrophila strains of serotype O:34. Infect Immun. 1992 Oct;60(10):4343–4349. doi: 10.1128/iai.60.10.4343-4349.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merino S., Camprubí S., Tomás J. M. The role of lipopolysaccharide in complement-killing of Aeromonas hydrophila strains of serotype O:34. J Gen Microbiol. 1991 Jul;137(7):1583–1590. doi: 10.1099/00221287-137-7-1583. [DOI] [PubMed] [Google Scholar]
- Merino S., Rubires X., Aguilar A., Tomás The O:34-antigen lipopolysaccharide as an adhesin in Aeromonas hydrophila. FEMS Microbiol Lett. 1996 Jun 1;139(2-3):97–101. doi: 10.1111/j.1574-6968.1996.tb08186.x. [DOI] [PubMed] [Google Scholar]
- Mikulskis A. V., Delor I., Thi V. H., Cornelis G. R. Regulation of the Yersinia enterocolitica enterotoxin Yst gene. Influence of growth phase, temperature, osmolarity, pH and bacterial host factors. Mol Microbiol. 1994 Dec;14(5):905–915. doi: 10.1111/j.1365-2958.1994.tb01326.x. [DOI] [PubMed] [Google Scholar]
- Misra S. K., Shimada T., Bhadra R. K., Pal S. C., Nair G. B. Serogroups of Aeromonas species from clinical and environmental sources in Calcutta, India. J Diarrhoeal Dis Res. 1989 Mar-Jun;7(1-2):8–12. [PubMed] [Google Scholar]
- Poole K., Braun V. Influence of growth temperature and lipopolysaccharide on hemolytic activity of Serratia marcescens. J Bacteriol. 1988 Nov;170(11):5146–5152. doi: 10.1128/jb.170.11.5146-5152.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakazaki R., Shimada T. O-serogrouping scheme for mesophilic Aeromonas strains. Jpn J Med Sci Biol. 1984 Oct-Dec;37(5-6):247–255. doi: 10.7883/yoken1952.37.247. [DOI] [PubMed] [Google Scholar]
- Trust T. J., Sparrow R. A. The bacterial flora in the alimentary tract of freshwater salmonid fishes. Can J Microbiol. 1974 Sep;20(9):1219–1228. doi: 10.1139/m74-188. [DOI] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Wollenweber H. W., Schlecht S., Lüderitz O., Rietschel E. T. Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Eur J Biochem. 1983 Jan 17;130(1):167–171. doi: 10.1111/j.1432-1033.1983.tb07132.x. [DOI] [PubMed] [Google Scholar]