Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Apr;65(4):1370–1376. doi: 10.1128/iai.65.4.1370-1376.1997

Inhibition of bacterial adherence to host tissue does not markedly affect disease in the murine model of Pseudomonas aeruginosa corneal infection.

T S Zaidi 1, M J Preston 1, G B Pier 1
PMCID: PMC175142  PMID: 9119476

Abstract

The prevention of bacterial infections by the inhibition of binding to host tissues is an oft-touted approach, but few studies with appropriate models of infection have tested its feasibility. Pseudomonas aeruginosa causes severe corneal infections in mice after inoculations with low doses, and infection is thought to depend upon an initial adherence of the bacteria to corneal cells. In vitro, adherence to corneal cells is mediated to a large degree by the complete-outer-core oligosaccharide of the bacterial lipopolysaccharide (LPS). However, bacteria adhering to tissues in vivo are difficult to differentiate from nonadherent bacteria. Since a direct correlate of P. aeruginosa adherence to corneal epithelial cells is the degree to which these cells internalize P. aeruginosa, the level of adherence in vivo can be approximated by measuring P. aeruginosa ingestion by cells by using gentamicin exclusion assays. To determine the degree to which inhibition of the corneal cell adherence affects the course of infection and disease in the murine model, we evaluated the ability of LPS-outer-core oligosaccharide to inhibit bacterial association and entry into corneal cells and to modulate the development of disease. Mice were anesthetized, and their corneas were scratched and inoculated with virulent P. aeruginosa 6294 or PAO1, along with either 50 microg of oligosaccharide derived from LPS from P. aeruginosa PAC557 (complete outer core but no O side chains) or oligosaccharide derived from LPS of P. aeruginosa PAC1RalgC::tet (incomplete-core oligosaccharide). After 4 h, there were no differences between groups in the counts of infecting and internalized bacteria. At 24 h, the complete-core oligosaccharide decreased the levels of bacteria per eye by 70 to 99.7% compared with the levels achieved by including the incomplete-core oligosaccharide in the infectious inoculum. Epithelial cell ingestion of bacteria was comparably affected. However, the effect on disease was modest and only evident at lower challenge doses that elicited mild disease in controls and when the bacterial association and ingestion were inhibited by >99%. Overall, it appears that in the murine model of P. aeruginosa corneal infection at challenge doses of bacteria 10-fold or greater than the minimal amount needed to cause disease, the absolute level of inhibition of bacterial adherence is insufficient to reduce the bacterial counts below that which elicits disease.

Full Text

The Full Text of this article is available as a PDF (139.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfonso E., Mandelbaum S., Fox M. J., Forster R. K. Ulcerative keratitis associated with contact lens wear. Am J Ophthalmol. 1986 Apr 15;101(4):429–433. doi: 10.1016/0002-9394(86)90641-0. [DOI] [PubMed] [Google Scholar]
  2. Aronson M., Medalia O., Schori L., Mirelman D., Sharon N., Ofek I. Prevention of colonization of the urinary tract of mice with Escherichia coli by blocking of bacterial adherence with methyl alpha-D-mannopyranoside. J Infect Dis. 1979 Mar;139(3):329–332. doi: 10.1093/infdis/139.3.329. [DOI] [PubMed] [Google Scholar]
  3. Arora S. K., Ritchings B. W., Almira E. C., Lory S., Ramphal R. Cloning and characterization of Pseudomonas aeruginosa fliF, necessary for flagellar assembly and bacterial adherence to mucin. Infect Immun. 1996 Jun;64(6):2130–2136. doi: 10.1128/iai.64.6.2130-2136.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beachey E. H. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis. 1981 Mar;143(3):325–345. doi: 10.1093/infdis/143.3.325. [DOI] [PubMed] [Google Scholar]
  5. Bisno A. L. Molecular aspects of bacterial colonization. Infect Control Hosp Epidemiol. 1995 Nov;16(11):648–657. doi: 10.1086/647032. [DOI] [PubMed] [Google Scholar]
  6. Coyne M. J., Jr, Russell K. S., Coyle C. L., Goldberg J. B. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol. 1994 Jun;176(12):3500–3507. doi: 10.1128/jb.176.12.3500-3507.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drewry D. T., Lomax J. A., Gray G. W., Wilkinson S. G. Studies of lipid A fractions from the lipopolysaccharides of Pseudomonas aeruginosa and Pseudomonas alcaligenes. Biochem J. 1973 Jul;133(3):563–572. doi: 10.1042/bj1330563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fleiszig S. M., Zaidi T. S., Fletcher E. L., Preston M. J., Pier G. B. Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection. Infect Immun. 1994 Aug;62(8):3485–3493. doi: 10.1128/iai.62.8.3485-3493.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleiszig S. M., Zaidi T. S., Pier G. B. Pseudomonas aeruginosa invasion of and multiplication within corneal epithelial cells in vitro. Infect Immun. 1995 Oct;63(10):4072–4077. doi: 10.1128/iai.63.10.4072-4077.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fleiszig S. M., Zaidi T. S., Preston M. J., Grout M., Evans D. J., Pier G. B. Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect Immun. 1996 Jun;64(6):2288–2294. doi: 10.1128/iai.64.6.2288-2294.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fletcher E. L., Fleiszig S. M., Brennan N. A. Lipopolysaccharide in adherence of Pseudomonas aeruginosa to the cornea and contact lenses. Invest Ophthalmol Vis Sci. 1993 May;34(6):1930–1936. [PubMed] [Google Scholar]
  12. Gupta S. K., Berk R. S., Masinick S., Hazlett L. D. Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Infect Immun. 1994 Oct;62(10):4572–4579. doi: 10.1128/iai.62.10.4572-4579.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hazlett L. D., Berk R. S. Effect of C3 depletion on experimental Pseudomonas aeruginosa ocular infection: histopathological analysis. Infect Immun. 1984 Mar;43(3):783–790. doi: 10.1128/iai.43.3.783-790.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hazlett L. D., Masinick S., Barrett R., Rosol K. Evidence for asialo GM1 as a corneal glycolipid receptor for Pseudomonas aeruginosa adhesion. Infect Immun. 1993 Dec;61(12):5164–5173. doi: 10.1128/iai.61.12.5164-5173.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lantz M. S. New insights into mechanisms of bacterial pathogenesis in periodontitis. Curr Opin Periodontol. 1996;3:10–18. [PubMed] [Google Scholar]
  16. Meyers D. J., Palmer K. C., Bale L. A., Kernacki K., Preston M., Brown T., Berk R. S. In vivo and in vitro toxicity of phospholipase C from Pseudomonas aeruginosa. Toxicon. 1992 Feb;30(2):161–169. doi: 10.1016/0041-0101(92)90469-l. [DOI] [PubMed] [Google Scholar]
  17. Preston M. J., Fleiszig S. M., Zaidi T. S., Goldberg J. B., Shortridge V. D., Vasil M. L., Pier G. B. Rapid and sensitive method for evaluating Pseudomonas aeruginosa virulence factors during corneal infections in mice. Infect Immun. 1995 Sep;63(9):3497–3501. doi: 10.1128/iai.63.9.3497-3501.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Preston M. J., Kernack K., Berk R. S. Kinetics of serum and ocular antibody responses in susceptible mice that received a secondary corneal infection with Pseudomonas aeruginosa. Infect Immun. 1993 Jun;61(6):2713–2716. doi: 10.1128/iai.61.6.2713-2716.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  20. Ritchings B. W., Almira E. C., Lory S., Ramphal R. Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect Immun. 1995 Dec;63(12):4868–4876. doi: 10.1128/iai.63.12.4868-4876.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rowe P. S., Meadow P. M. Structure of the Core oligosaccharide from the lipopolysaccharide of Pseudomonas aeruginosa PAC1R and its defective mutants. Eur J Biochem. 1983 May 2;132(2):329–337. doi: 10.1111/j.1432-1033.1983.tb07366.x. [DOI] [PubMed] [Google Scholar]
  22. Rudel T., Scheurerpflug I., Meyer T. F. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature. 1995 Jan 26;373(6512):357–359. doi: 10.1038/373357a0. [DOI] [PubMed] [Google Scholar]
  23. Shapiro L. The bacterial flagellum: from genetic network to complex architecture. Cell. 1995 Feb 24;80(4):525–527. doi: 10.1016/0092-8674(95)90505-7. [DOI] [PubMed] [Google Scholar]
  24. Singh A., Hazlett L. D., Berk R. S. Characterization of Pseudomonas aeruginosa adherence to mouse corneas in organ culture. Infect Immun. 1990 May;58(5):1301–1307. doi: 10.1128/iai.58.5.1301-1307.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith H. The revival of interest in mechanisms of bacterial pathogenicity. Biol Rev Camb Philos Soc. 1995 May;70(2):277–316. doi: 10.1111/j.1469-185x.1995.tb01068.x. [DOI] [PubMed] [Google Scholar]
  26. Stapleton F., Dart J. K., Seal D. V., Matheson M. Epidemiology of Pseudomonas aeruginosa keratitis in contact lens wearers. Epidemiol Infect. 1995 Jun;114(3):395–402. doi: 10.1017/s0950268800052109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steuhl K. P., Döring G., Henni A., Thiel H. J., Botzenhart K. Relevance of host-derived and bacterial factors in Pseudomonas aeruginosa corneal infections. Invest Ophthalmol Vis Sci. 1987 Sep;28(9):1559–1568. [PubMed] [Google Scholar]
  28. Thiel H. J., Steuhl K. P., Döring G. Therapy of Pseudomonas aeruginosa eye infections. Antibiot Chemother (1971) 1987;39:92–101. doi: 10.1159/000414337. [DOI] [PubMed] [Google Scholar]
  29. Wong W. Y., Campbell A. P., McInnes C., Sykes B. D., Paranchych W., Irvin R. T., Hodges R. S. Structure-function analysis of the adherence-binding domain on the pilin of Pseudomonas aeruginosa strains PAK and KB7. Biochemistry. 1995 Oct 10;34(40):12963–12972. doi: 10.1021/bi00040a006. [DOI] [PubMed] [Google Scholar]
  30. Zaidi T. S., Fleiszig S. M., Preston M. J., Goldberg J. B., Pier G. B. Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci. 1996 May;37(6):976–986. [PubMed] [Google Scholar]
  31. Zhao Z., Panjwani N. Pseudomonas aeruginosa infection of the cornea and asialo GM1. Infect Immun. 1995 Jan;63(1):353–355. doi: 10.1128/iai.63.1.353-355.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES