Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Apr;65(4):1377–1386. doi: 10.1128/iai.65.4.1377-1386.1997

Identification of the ADP-L-glycero-D-manno-heptose-6-epimerase (rfaD) and heptosyltransferase II (rfaF) biosynthesis genes from nontypeable Haemophilus influenzae 2019.

W A Nichols 1, B W Gibson 1, W Melaugh 1, N G Lee 1, M Sunshine 1, M A Apicella 1
PMCID: PMC175143  PMID: 9119477

Abstract

Haemophilus influenzae is an important human pathogen. The lipooligosaccharide (LOS) of H. influenzae has been implicated as a virulence determinant. To better understand the assembly of LOS in nontypeable H. influenzae (NtHi), we have cloned and characterized the rfaD and rfaF genes of NtHi 2019, which encode the ADP-L-glycero-D-manno-heptose-6-epimerase and heptosyltransferase II enzymes, respectively. This cloning was accomplished by the complementation of Salmonella typhimurium lipopolysaccharide (LPS) biosynthesis gene mutants. These deep rough mutants are novobiocin susceptible until complemented with the appropriate gene. In this manner, we are able to use novobiocin resistance to select for specific NtHi LOS inner core biosynthesis genes. Such a screening system yielded a plasmid with a 4.8-kb insert. This plasmid was able to complement both rfaD and rfaF mutants of S. typhimurium. The LPS of these complemented strains appeared identical to the wild-type Salmonella LPS. The genes encoding the rfaD and rfaF genes from NtHi 2019 were sequenced and found to be similar to the analogous genes from S. typhimurium and Escherichia coli. The rfaD gene encodes a polypeptide of 35 kDa and the rfaF encodes a protein of 39 kDa, as demonstrated by in vitro transcription-translation studies. Isogenic mutants which demonstrated truncated LOS consistent with inner core biosynthesis mutants were constructed in the NtHi strain 2019. Primer extension analysis demonstrated the presence of a strong promoter upstream of rfaD but suggested only a very weak promoter upstream of rfaF. Complementation studies, however, suggest that the rfaF gene does have an independent promoter. Mass spectrometric analysis shows that the LOS molecules expressed by H. influenzae rfaD and rfaF mutant strains have identical molecular masses. Additional studies verified that in the rfaD mutant strain, D-glycero-D-manno-heptose is added to the LOS molecule in place of the usual L-glycero-D-manno-heptose. Finally, the genetic organizations of the inner core biosynthesis genes of S. typhimurium, E. coli, and several strains of H. influenzae were examined, and substantial differences were uncovered.

Full Text

The Full Text of this article is available as a PDF (848.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  2. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  3. Gibson B. W., Melaugh W., Phillips N. J., Apicella M. A., Campagnari A. A., Griffiss J. M. Investigation of the structural heterogeneity of lipooligosaccharides from pathogenic Haemophilus and Neisseria species and of R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry. J Bacteriol. 1993 May;175(9):2702–2712. doi: 10.1128/jb.175.9.2702-2712.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  5. Helander I. M., Lindner B., Brade H., Altmann K., Lindberg A. A., Rietschel E. T., Zähringer U. Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype. Eur J Biochem. 1988 Nov 15;177(3):483–492. doi: 10.1111/j.1432-1033.1988.tb14398.x. [DOI] [PubMed] [Google Scholar]
  6. Herriott R. M., Meyer E. M., Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):517–524. doi: 10.1128/jb.101.2.517-524.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kimura A., Hansen E. J. Antigenic and phenotypic variations of Haemophilus influenzae type b lipopolysaccharide and their relationship to virulence. Infect Immun. 1986 Jan;51(1):69–79. doi: 10.1128/iai.51.1.69-79.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kimura A., Patrick C. C., Miller E. E., Cope L. D., McCracken G. H., Jr, Hansen E. J. Haemophilus influenzae type b lipooligosaccharide: stability of expression and association with virulence. Infect Immun. 1987 Sep;55(9):1979–1986. doi: 10.1128/iai.55.9.1979-1986.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lee N. G., Sunshine M. G., Apicella M. A. Molecular cloning and characterization of the nontypeable Haemophilus influenzae 2019 rfaE gene required for lipopolysaccharide biosynthesis. Infect Immun. 1995 Mar;63(3):818–824. doi: 10.1128/iai.63.3.818-824.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lehmann V., Hämmerling G., Nurminen M., Minner I., Ruschmann E., Lüderitz O., Kuo T. T., Stocker B. A. A new class of heptose-defective mutant of Salmonella typhimurium. Eur J Biochem. 1973 Jan 15;32(2):268–275. doi: 10.1111/j.1432-1033.1973.tb02607.x. [DOI] [PubMed] [Google Scholar]
  12. Melaugh W., Phillips N. J., Campagnari A. A., Karalus R., Gibson B. W. Partial characterization of the major lipooligosaccharide from a strain of Haemophilus ducreyi, the causative agent of chancroid, a genital ulcer disease. J Biol Chem. 1992 Jul 5;267(19):13434–13439. [PubMed] [Google Scholar]
  13. Ono M., Kuwano M. A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. J Mol Biol. 1979 Apr 15;129(3):343–357. doi: 10.1016/0022-2836(79)90500-x. [DOI] [PubMed] [Google Scholar]
  14. Pegues J. C., Chen L. S., Gordon A. W., Ding L., Coleman W. G., Jr Cloning, expression, and characterization of the Escherichia coli K-12 rfaD gene. J Bacteriol. 1990 Aug;172(8):4652–4660. doi: 10.1128/jb.172.8.4652-4660.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Phillips N. J., Apicella M. A., Griffiss J. M., Gibson B. W. Structural studies of the lipooligosaccharides from Haemophilus influenzae type b strain A2. Biochemistry. 1993 Mar 2;32(8):2003–2012. doi: 10.1021/bi00059a017. [DOI] [PubMed] [Google Scholar]
  16. Phillips N. J., John C. M., Reinders L. G., Gibson B. W., Apicella M. A., Griffiss J. M. Structural models for the cell surface lipooligosaccharides of Neisseria gonorrhoeae and Haemophilus influenzae. Biomed Environ Mass Spectrom. 1990 Nov;19(11):731–745. doi: 10.1002/bms.1200191112. [DOI] [PubMed] [Google Scholar]
  17. Phillips N. J., McLaughlin R., Miller T. J., Apicella M. A., Gibson B. W. Characterization of two transposon mutants from Haemophilus influenzae type b with altered lipooligosaccharide biosynthesis. Biochemistry. 1996 May 7;35(18):5937–5947. doi: 10.1021/bi960059b. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schnaitman C. A., Klena J. D. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev. 1993 Sep;57(3):655–682. doi: 10.1128/mr.57.3.655-682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sirisena D. M., MacLachlan P. R., Liu S. L., Hessel A., Sanderson K. E. Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaF gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2379–2385. doi: 10.1128/jb.176.8.2379-2385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  22. Wilcox K. W., Smith H. O. Isolation and characterization of mutants of Haemophilus influenzae deficient in an adenosine 5'-triphosphate-dependent deoxyribonuclease activity. J Bacteriol. 1975 May;122(2):443–453. doi: 10.1128/jb.122.2.443-453.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zwahlen A., Rubin L. G., Moxon E. R. Contribution of lipopolysaccharide to pathogenicity of Haemophilus influenzae: comparative virulence of genetically-related strains in rats. Microb Pathog. 1986 Oct;1(5):465–473. doi: 10.1016/0882-4010(86)90008-2. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES