Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 May;65(5):1675–1682. doi: 10.1128/iai.65.5.1675-1682.1997

Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii.

L E Neyer 1, G Grunig 1, M Fort 1, J S Remington 1, D Rennick 1, C A Hunter 1
PMCID: PMC175195  PMID: 9125546

Abstract

Interleukin-10 (IL-10) is a cytokine which can inhibit T-cell and natural killer (NK) cell functions associated with cell-mediated immunity to intracellular infections. The production of IL-10 by mice infected with Toxoplasma gondii has been implicated in the suppression of lymphocyte proliferation observed during acute toxoplasmosis, as well as susceptibility to infection with this parasite. We have used C57BL/6 mice which lack a functional IL-10 gene (IL-10(-/-) mice) to investigate the role of IL-10 in acute toxoplasmosis. Intraperitoneal infection of IL-10(-/-) mice with T. gondii resulted in 100% mortality by day 13, whereas wild-type C57BL/6 (WT) mice survived acute infection. IL-10(-/-) mice infected with T. gondii had significantly higher serum levels of IL-12 and gamma interferon (IFN-gamma) than WT mice. Early mortality of infected IL-10(-/-) mice was prevented by treatment with IL-10 and significantly delayed by neutralizing antibodies to IL-12 and IFN-gamma. Further studies revealed that SCID/IL-10(-/-) mice infected with T. gondii had delayed time to death compared to IL-10(-/-) mice, indicating that lymphocytes contributed to death of IL-10(-/-) mice. In addition, infected SCID/IL-10(-/-) mice survived longer than infected SCID mice. These latter data indicate that in mice lacking lymphocytes, endogenous IL-10 is associated with increased susceptibility to T. gondii. However, the lack of IL-10 does not alter the infection-induced suppression of T cell and NK cell functions. Our experiments reveal that IL-10 is associated with protection or increased susceptibility to infection with T. gondii, depending on whether mice possess lymphocytes, and demonstrate the important roles of IL-12 and IFN-gamma in the early infection-induced mortality observed in the IL-10(-/-) mice.

Full Text

The Full Text of this article is available as a PDF (211.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahvazi B. C., Jacobs P., Stevenson M. M. Role of macrophage-derived nitric oxide in suppression of lymphocyte proliferation during blood-stage malaria. J Leukoc Biol. 1995 Jul;58(1):23–31. doi: 10.1002/jlb.58.1.23. [DOI] [PubMed] [Google Scholar]
  2. Bancroft G. J. The role of natural killer cells in innate resistance to infection. Curr Opin Immunol. 1993 Aug;5(4):503–510. doi: 10.1016/0952-7915(93)90030-v. [DOI] [PubMed] [Google Scholar]
  3. Berg D. J., Davidson N., Kühn R., Müller W., Menon S., Holland G., Thompson-Snipes L., Leach M. W., Rennick D. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest. 1996 Aug 15;98(4):1010–1020. doi: 10.1172/JCI118861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berg D. J., Kühn R., Rajewsky K., Müller W., Menon S., Davidson N., Grünig G., Rennick D. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest. 1995 Nov;96(5):2339–2347. doi: 10.1172/JCI118290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blewett D. A., Miller J. K., Harding J. Simple technique for the direct isolation of toxoplasma tissue cysts from fetal ovine brain. Vet Rec. 1983 Jan 29;112(5):98–100. doi: 10.1136/vr.112.5.98. [DOI] [PubMed] [Google Scholar]
  6. Brinkmann V., Sharma S. D., Remington J. S. Different regulation of the L3T4-T cell subset by B cells in different mouse strains bearing the H-2k haplotype. J Immunol. 1986 Nov 1;137(9):2991–2997. [PubMed] [Google Scholar]
  7. Candolfi E., Hunter C. A., Remington J. S. Mitogen- and antigen-specific proliferation of T cells in murine toxoplasmosis is inhibited by reactive nitrogen intermediates. Infect Immun. 1994 May;62(5):1995–2001. doi: 10.1128/iai.62.5.1995-2001.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Candolfi E., Hunter C. A., Remington J. S. Roles of gamma interferon and other cytokines in suppression of the spleen cell proliferative response to concanavalin A and toxoplasma antigen during acute toxoplasmosis. Infect Immun. 1995 Mar;63(3):751–756. doi: 10.1128/iai.63.3.751-756.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chan J., Siegel J. P., Luft B. J. Demonstration of T-cell dysfunction during acute toxoplasma infection. Cell Immunol. 1986 Apr 1;98(2):422–433. doi: 10.1016/0008-8749(86)90301-1. [DOI] [PubMed] [Google Scholar]
  10. Chardès T., Velge-Roussel F., Mevelec P., Mevelec M. N., Buzoni-Gatel D., Bout D. Mucosal and systemic cellular immune responses induced by Toxoplasma gondii antigens in cyst orally infected mice. Immunology. 1993 Mar;78(3):421–429. [PMC free article] [PubMed] [Google Scholar]
  11. Conley F. K., Jenkins K. A., Remington J. S. Toxoplasma gondii infection of the central nervous system. Use of the peroxidase-antiperoxidase method to demonstrate toxoplasma in formalin fixed, paraffin embedded tissue sections. Hum Pathol. 1981 Aug;12(8):690–698. doi: 10.1016/s0046-8177(81)80170-0. [DOI] [PubMed] [Google Scholar]
  12. Denis M., Ghadirian E. IL-10 neutralization augments mouse resistance to systemic Mycobacterium avium infections. J Immunol. 1993 Nov 15;151(10):5425–5430. [PubMed] [Google Scholar]
  13. Ding L., Linsley P. S., Huang L. Y., Germain R. N., Shevach E. M. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol. 1993 Aug 1;151(3):1224–1234. [PubMed] [Google Scholar]
  14. Gately M. K., Warrier R. R., Honasoge S., Carvajal D. M., Faherty D. A., Connaughton S. E., Anderson T. D., Sarmiento U., Hubbard B. R., Murphy M. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-gamma in vivo. Int Immunol. 1994 Jan;6(1):157–167. doi: 10.1093/intimm/6.1.157. [DOI] [PubMed] [Google Scholar]
  15. Gazzinelli R. T., Hieny S., Wynn T. A., Wolf S., Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6115–6119. doi: 10.1073/pnas.90.13.6115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gazzinelli R. T., Oswald I. P., James S. L., Sher A. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J Immunol. 1992 Mar 15;148(6):1792–1796. [PubMed] [Google Scholar]
  17. Gazzinelli R. T., Wysocka M., Hieny S., Scharton-Kersten T., Cheever A., Kühn R., Müller W., Trinchieri G., Sher A. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol. 1996 Jul 15;157(2):798–805. [PubMed] [Google Scholar]
  18. Ghalib H. W., Piuvezam M. R., Skeiky Y. A., Siddig M., Hashim F. A., el-Hassan A. M., Russo D. M., Reed S. G. Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest. 1993 Jul;92(1):324–329. doi: 10.1172/JCI116570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  20. Hatcher F. M., Kuhn R. E., Cerrone M. C., Burton R. C. Increased natural killer cell activity in experimental American trypanosomiasis. J Immunol. 1981 Sep;127(3):1126–1130. [PubMed] [Google Scholar]
  21. Hauser W. E., Jr, Sharma S. D., Remington J. S. Natural killer cells induced by acute and chronic toxoplasma infection. Cell Immunol. 1982 May 15;69(2):330–346. doi: 10.1016/0008-8749(82)90076-4. [DOI] [PubMed] [Google Scholar]
  22. Heinzel F. P., Sadick M. D., Mutha S. S., Locksley R. M. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7011–7015. doi: 10.1073/pnas.88.16.7011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holaday B. J., Pompeu M. M., Jeronimo S., Texeira M. J., Sousa A. de A., Vasconcelos A. W., Pearson R. D., Abrams J. S., Locksley R. M. Potential role for interleukin-10 in the immunosuppression associated with kala azar. J Clin Invest. 1993 Dec;92(6):2626–2632. doi: 10.1172/JCI116878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hunter C. A., Abrams J. S., Beaman M. H., Remington J. S. Cytokine mRNA in the central nervous system of SCID mice infected with Toxoplasma gondii: importance of T-cell-independent regulation of resistance to T. gondii. Infect Immun. 1993 Oct;61(10):4038–4044. doi: 10.1128/iai.61.10.4038-4044.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hunter C. A., Subauste C. S., Van Cleave V. H., Remington J. S. Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha. Infect Immun. 1994 Jul;62(7):2818–2824. doi: 10.1128/iai.62.7.2818-2824.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Johnson L. L. SCID mouse models of acute and relapsing chronic Toxoplasma gondii infections. Infect Immun. 1992 Sep;60(9):3719–3724. doi: 10.1128/iai.60.9.3719-3724.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Johnson L. L., VanderVegt F. P., Havell E. A. Gamma interferon-dependent temporary resistance to acute Toxoplasma gondii infection independent of CD4+ or CD8+ lymphocytes. Infect Immun. 1993 Dec;61(12):5174–5180. doi: 10.1128/iai.61.12.5174-5180.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Khan I. A., Matsuura T., Fonseka S., Kasper L. H. Production of nitric oxide (NO) is not essential for protection against acute Toxoplasma gondii infection in IRF-1-/- mice. J Immunol. 1996 Jan 15;156(2):636–643. [PubMed] [Google Scholar]
  29. Khan I. A., Matsuura T., Kasper L. H. IL-10 mediates immunosuppression following primary infection with Toxoplasma gondii in mice. Parasite Immunol. 1995 Apr;17(4):185–195. doi: 10.1111/j.1365-3024.1995.tb00888.x. [DOI] [PubMed] [Google Scholar]
  30. Kühn R., Löhler J., Rennick D., Rajewsky K., Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993 Oct 22;75(2):263–274. doi: 10.1016/0092-8674(93)80068-p. [DOI] [PubMed] [Google Scholar]
  31. Liesenfeld O., Kosek J., Remington J. S., Suzuki Y. Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med. 1996 Aug 1;184(2):597–607. doi: 10.1084/jem.184.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Luft B. J., Kansas G., Engleman E. G., Remington J. S. Functional and quantitative alterations in T lymphocyte subpopulations in acute toxoplasmosis. J Infect Dis. 1984 Nov;150(5):761–767. doi: 10.1093/infdis/150.5.761. [DOI] [PubMed] [Google Scholar]
  33. Rennick D., Berg D., Holland G. Interleukin 10: an overview. Prog Growth Factor Res. 1992;4(3):207–227. doi: 10.1016/0955-2235(92)90020-i. [DOI] [PubMed] [Google Scholar]
  34. Rowland R. R., Butz E. A., Plagemann P. G. Nitric oxide production by splenic macrophages is not responsible for T cell suppression during acute infection with lactate dehydrogenase-elevating virus. J Immunol. 1994 Jun 15;152(12):5785–5795. [PubMed] [Google Scholar]
  35. Sander B., Höidén I., Andersson U., Möller E., Abrams J. S. Similar frequencies and kinetics of cytokine producing cells in murine peripheral blood and spleen. Cytokine detection by immunoassay and intracellular immunostaining. J Immunol Methods. 1993 Dec 3;166(2):201–214. doi: 10.1016/0022-1759(93)90361-a. [DOI] [PubMed] [Google Scholar]
  36. Schleifer K. W., Mansfield J. M. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol. 1993 Nov 15;151(10):5492–5503. [PubMed] [Google Scholar]
  37. Sharma S. D., Mullenax J., Araujo F. G., Erlich H. A., Remington J. S. Western Blot analysis of the antigens of Toxoplasma gondii recognized by human IgM and IgG antibodies. J Immunol. 1983 Aug;131(2):977–983. [PubMed] [Google Scholar]
  38. Sieling P. A., Abrams J. S., Yamamura M., Salgame P., Bloom B. R., Rea T. H., Modlin R. L. Immunosuppressive roles for IL-10 and IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J Immunol. 1993 Jun 15;150(12):5501–5510. [PubMed] [Google Scholar]
  39. Silva J. S., Morrissey P. J., Grabstein K. H., Mohler K. M., Anderson D., Reed S. G. Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med. 1992 Jan 1;175(1):169–174. doi: 10.1084/jem.175.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Su H. C., Orange J. S., Fast L. D., Chan A. T., Simpson S. J., Terhorst C., Biron C. A. IL-2-dependent NK cell responses discovered in virus-infected beta 2-microglobulin-deficient mice. J Immunol. 1994 Dec 15;153(12):5674–5681. [PubMed] [Google Scholar]
  41. Subauste C. S., Dawson L., Remington J. S. Human lymphokine-activated killer cells are cytotoxic against cells infected with Toxoplasma gondii. J Exp Med. 1992 Dec 1;176(6):1511–1519. doi: 10.1084/jem.176.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Suzuki Y., Orellana M. A., Schreiber R. D., Remington J. S. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science. 1988 Apr 22;240(4851):516–518. doi: 10.1126/science.3128869. [DOI] [PubMed] [Google Scholar]
  43. Taterka J., Cebra J. J., Rubin D. H. Characterization of cytotoxic cells from reovirus-infected SCID mice: activated cells express natural killer- and lymphokine-activated killer-like activity but fail to clear infection. J Virol. 1995 Jun;69(6):3910–3914. doi: 10.1128/jvi.69.6.3910-3914.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilson C. B., Tsai V., Remington J. S. Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med. 1980 Feb 1;151(2):328–346. doi: 10.1084/jem.151.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. de Waal Malefyt R., Yssel H., Roncarolo M. G., Spits H., de Vries J. E. Interleukin-10. Curr Opin Immunol. 1992 Jun;4(3):314–320. doi: 10.1016/0952-7915(92)90082-p. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES