Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 May;65(5):1722–1728. doi: 10.1128/iai.65.5.1722-1728.1997

A monoclonal antibody to Borrelia burgdorferi flagellin modifies neuroblastoma cell neuritogenesis in vitro: a possible role for autoimmunity in the neuropathy of Lyme disease.

L H Sigal 1, S Williams 1
PMCID: PMC175205  PMID: 9125553

Abstract

Although Borrelia burgdorferi is found at the site of many manifestations of Lyme disease, local infection may not explain all features of the disease. Previous work has demonstrated that the organism's flagellin cross-reacts with a component of human peripheral nerve axon, heat shock protein 60. The cross-reacting epitope is identified by a single anti-B. burgdorferi flagellin monoclonal antibody, H9724. We now report that the spontaneous and peptide growth factor-stimulated in vitro neuritogenesis of SK-N-SH neuroblastoma cells and other neural tumor cell lines is suppressed by H9724. In contrast, changes induced by exposure of these cells to optimal and suboptimal concentrations of cyclic AMP, phorbol ester, or retinoic acid are not affected by H9724. H9724 does not decrease cell viability or the ability of the cells to anchor to the culture plate or extracellular matrix and does not block nerve growth factor binding to the cells. These findings are compatible with the premise that antiaxonal antibodies formed during the immune response to B. burgdorferi flagellin might modify axonal function in vivo and play a role in the pathogenesis of neurologic features of Lyme disease. A humoral immune response predicated on molecular mimicry could explain persistent or ongoing neurologic dysfunction occurring after elimination of the organism by appropriate antibiotic therapy.

Full Text

The Full Text of this article is available as a PDF (276.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberer E., Brunner C., Suchanek G., Klade H., Barbour A., Stanek G., Lassmann H. Molecular mimicry and Lyme borreliosis: a shared antigenic determinant between Borrelia burgdorferi and human tissue. Ann Neurol. 1989 Dec;26(6):732–737. doi: 10.1002/ana.410260608. [DOI] [PubMed] [Google Scholar]
  2. Abraham J. A., Mergia A., Whang J. L., Tumolo A., Friedman J., Hjerrild K. A., Gospodarowicz D., Fiddes J. C. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986 Aug 1;233(4763):545–548. doi: 10.1126/science.2425435. [DOI] [PubMed] [Google Scholar]
  3. Barbour A. G., Hayes S. F., Heiland R. A., Schrumpf M. E., Tessier S. L. A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun. 1986 May;52(2):549–554. doi: 10.1128/iai.52.2.549-554.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbour A. G., Schrumpf M. E. Polymorphisms of major surface proteins of Borrelia burgdorferi. Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Dec;263(1-2):83–91. doi: 10.1016/s0176-6724(86)80107-9. [DOI] [PubMed] [Google Scholar]
  5. Dai Z., Lackland H., Stein S., Li Q., Radziewicz R., Williams S., Sigal L. H. Molecular mimicry in Lyme disease: monoclonal antibody H9724 to B. burgdorferi flagellin specifically detects chaperonin-HSP60. Biochim Biophys Acta. 1993 Mar 24;1181(1):97–100. doi: 10.1016/0925-4439(93)90096-j. [DOI] [PubMed] [Google Scholar]
  6. Douville P. J., Harvey W. J., Carbonetto S. Isolation and partial characterization of high affinity laminin receptors in neural cells. J Biol Chem. 1988 Oct 15;263(29):14964–14969. [PubMed] [Google Scholar]
  7. Duray P. H. Clinical pathologic correlations of Lyme disease. Rev Infect Dis. 1989 Sep-Oct;11 (Suppl 6):S1487–S1493. doi: 10.1093/clinids/11.supplement_6.s1487. [DOI] [PubMed] [Google Scholar]
  8. Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
  9. Fabian R. H., Petroff G. Intraneuronal IgG in the central nervous system: uptake by retrograde axonal transport. Neurology. 1987 Nov;37(11):1780–1784. doi: 10.1212/wnl.37.11.1780. [DOI] [PubMed] [Google Scholar]
  10. Fabian R. H. Uptake of antineuronal IgM by CNS neurons: comparison with antineuronal IgG. Neurology. 1990 Mar;40(3 Pt 1):419–422. doi: 10.1212/wnl.40.3_part_1.419. [DOI] [PubMed] [Google Scholar]
  11. Fitzgerald M., Keast D. Fab fragments from the monoclonal antibody ML30 bind to treated human myeloid leukemia cells. FASEB J. 1994 Feb;8(2):259–261. doi: 10.1096/fasebj.8.2.8119496. [DOI] [PubMed] [Google Scholar]
  12. Gajdusek D. C. Hypothesis: interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N Engl J Med. 1985 Mar 14;312(11):714–719. doi: 10.1056/NEJM198503143121110. [DOI] [PubMed] [Google Scholar]
  13. Gorini G., Ciotti M. T., Starace G., Vigneti E., Raschellà G. Fc gamma receptors are expressed on human neuroblastoma cell lines: lack of correlation with N-myc oncogene activity. Int J Neurosci. 1992 Feb;62(3-4):287–297. doi: 10.3109/00207459108999781. [DOI] [PubMed] [Google Scholar]
  14. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grob P. M., Berlot C. H., Bothwell M. A. Affinity labeling and partial purification of nerve growth factor receptors from rat pheochromocytoma and human melanoma cells. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6819–6823. doi: 10.1073/pnas.80.22.6819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Halperin J. J., Little B. W., Coyle P. K., Dattwyler R. J. Lyme disease: cause of a treatable peripheral neuropathy. Neurology. 1987 Nov;37(11):1700–1706. doi: 10.1212/wnl.37.11.1700. [DOI] [PubMed] [Google Scholar]
  17. Higuchi T., Hannigan G. E., Malkin D., Yeger H., Williams B. R. Enhancement by retinoic acid and dibutyryl cyclic adenosine 3':5'-monophosphate of the differentiation and gene expression of human neuroblastoma cells induced by interferon. Cancer Res. 1991 Aug 1;51(15):3958–3964. [PubMed] [Google Scholar]
  18. Levine B., Hardwick J. M., Trapp B. D., Crawford T. O., Bollinger R. C., Griffin D. E. Antibody-mediated clearance of alphavirus infection from neurons. Science. 1991 Nov 8;254(5033):856–860. doi: 10.1126/science.1658936. [DOI] [PubMed] [Google Scholar]
  19. Logigian E. L., Kaplan R. F., Steere A. C. Chronic neurologic manifestations of Lyme disease. N Engl J Med. 1990 Nov 22;323(21):1438–1444. doi: 10.1056/NEJM199011223232102. [DOI] [PubMed] [Google Scholar]
  20. Malawista S. E. Pathogenesis of Lyme disease. Rheumatol Int. 1989;9(3-5):233–235. doi: 10.1007/BF00271887. [DOI] [PubMed] [Google Scholar]
  21. McVicar D. W., McCrady C. W., Merchant R. E. Corticosteroids inhibit the delivery of short-term activational pulses of phorbol ester and calcium ionophore to human peripheral T cells. Cell Immunol. 1992 Mar;140(1):145–157. doi: 10.1016/0008-8749(92)90183-p. [DOI] [PubMed] [Google Scholar]
  22. Meier C., Grahmann F., Engelhardt A., Dumas M. Peripheral nerve disorders in Lyme-Borreliosis. Nerve biopsy studies from eight cases. Acta Neuropathol. 1989;79(3):271–278. doi: 10.1007/BF00294661. [DOI] [PubMed] [Google Scholar]
  23. Mennes P. A., Yates J., Klahr S. Effects of ionophore A23187 and external calcium concentrations on renal gluconeogenesis. Proc Soc Exp Biol Med. 1978 Feb;157(2):168–174. doi: 10.3181/00379727-157-40014. [DOI] [PubMed] [Google Scholar]
  24. Nakafuku M., Satoh T., Kaziro Y. Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active Ras.GTP complex in rat pheochromocytoma PC12 cells. J Biol Chem. 1992 Sep 25;267(27):19448–19454. [PubMed] [Google Scholar]
  25. Nurcombe V., Ford M. D., Wildschut J. A., Bartlett P. F. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science. 1993 Apr 2;260(5104):103–106. doi: 10.1126/science.7682010. [DOI] [PubMed] [Google Scholar]
  26. Oldstone M. B. Molecular mimicry and autoimmune disease. Cell. 1987 Sep 11;50(6):819–820. doi: 10.1016/0092-8674(87)90507-1. [DOI] [PubMed] [Google Scholar]
  27. Pincus D. W., DiCicco-Bloom E., Black I. B. Role of voltage-sensitive calcium channels in mitogenic stimulation of neuroblasts. Brain Res. 1991 Jul 12;553(2):211–214. doi: 10.1016/0006-8993(91)90827-i. [DOI] [PubMed] [Google Scholar]
  28. Påhlman S., Ruusala A. I., Abrahamsson L., Mattsson M. E., Esscher T. Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ. 1984 Jun;14(2):135–144. doi: 10.1016/0045-6039(84)90038-1. [DOI] [PubMed] [Google Scholar]
  29. Ross A. H., Grob P., Bothwell M., Elder D. E., Ernst C. S., Marano N., Ghrist B. F., Slemp C. C., Herlyn M., Atkinson B. Characterization of nerve growth factor receptor in neural crest tumors using monoclonal antibodies. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6681–6685. doi: 10.1073/pnas.81.21.6681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sigal L. H. Cross-reactivity between Borrelia burgdorferi flagellin and a human axonal 64,000 molecular weight protein. J Infect Dis. 1993 Jun;167(6):1372–1378. doi: 10.1093/infdis/167.6.1372. [DOI] [PubMed] [Google Scholar]
  31. Sigal L. H. Lyme disease, 1988: immunologic manifestations and possible immunopathogenetic mechanisms. Semin Arthritis Rheum. 1989 Feb;18(3):151–167. doi: 10.1016/0049-0172(89)90058-9. [DOI] [PubMed] [Google Scholar]
  32. Sigal L. H. Persisting complaints attributed to chronic Lyme disease: possible mechanisms and implications for management. Am J Med. 1994 Apr;96(4):365–374. doi: 10.1016/0002-9343(94)90068-x. [DOI] [PubMed] [Google Scholar]
  33. Sigal L. H., Tatum A. H. Lyme disease patients' serum contains IgM antibodies to Borrelia burgdorferi that cross-react with neuronal antigens. Neurology. 1988 Sep;38(9):1439–1442. doi: 10.1212/wnl.38.9.1439. [DOI] [PubMed] [Google Scholar]
  34. Smith C. A., Davis T., Anderson D., Solam L., Beckmann M. P., Jerzy R., Dower S. K., Cosman D., Goodwin R. G. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science. 1990 May 25;248(4958):1019–1023. doi: 10.1126/science.2160731. [DOI] [PubMed] [Google Scholar]
  35. Steere A. C., Grodzicki R. L., Kornblatt A. N., Craft J. E., Barbour A. G., Burgdorfer W., Schmid G. P., Johnson E., Malawista S. E. The spirochetal etiology of Lyme disease. N Engl J Med. 1983 Mar 31;308(13):733–740. doi: 10.1056/NEJM198303313081301. [DOI] [PubMed] [Google Scholar]
  36. Steere A. C. Lyme disease. N Engl J Med. 1989 Aug 31;321(9):586–596. doi: 10.1056/NEJM198908313210906. [DOI] [PubMed] [Google Scholar]
  37. van den Berg W. B., van Beusekom H. J., van de Putte L. B., Zwarts W. A., van der Sluis M. Antigen handling in antigen-induced arthritis in mice: an autoradiographic and immunofluorescence study using whole joint sections. Am J Pathol. 1982 Jul;108(1):9–16. [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES