Abstract
After brief heat shock treatment, clinical strains of nontypeable Haemophilus influenzae show a long-lasting change in the binding specificity for glycolipids and a markedly increased growth rate in vitro. Non-heat-shocked H. influenzae specifically binds to phosphatidylethanolamine (PE), gangliotetraosylceramide (Gg4), and gangliotriosylceramide (Gg3) and binds minimally to sulfatoxygalactosylceramide (SGC; also called sulfatide). After a 5-min heat shock at 42 degrees C, strains of H. influenzae showed a marked increase in binding to SGC and acquired the ability to bind to sulfatoxygalactosylglycerol (SGG) in thin-layer chromatography overlays. Additionally, heat-shocked H. influenzae cells showed an increased growth rate (twofold). Increased sulfatide binding and growth rate were retained for approximately 60 generations, after which the heat-shocked organisms reverted to their original glycolipid binding pattern (i.e., PE, Gg3, and Gg4) and growth rate. Such organisms could then be reexposed to heat, and the heat shock phenotype would be reestablished. After exposure of the organisms to brief heat shock, Western blotting of a surface extract of H. influenzae with anti-bovine-brain hsp-70 monoclonal antibody showed an increase in two protein bands at 82 and 60 kDa. This antibody was a potent inhibitor of the binding of heat-shocked H. influenzae to SGC and SGG but had no effect on PE, Gg3, or Gg4 binding in vitro. In contrast, an antibody against an H. influenzae PE-Gg3-Gg4-binding adhesin that was recently identified (J. Busse, E. Hartmann, and C. A. Lingwood, J. Infect. Dis. 175:77-83, 1996) selectively inhibited the organism's binding to PE and Gg3. This indicates that cell surface hsp-70-related heat shock proteins can mediate H. influenzae attachment to sulfoglycolipids following heat shock. We suggest that such increased binding to sulfated glycolipids may be a response to fever following H. influenzae infection in humans.
Full Text
The Full Text of this article is available as a PDF (816.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boulanger J., Faulds D., Eddy E. M., Lingwood C. A. Members of the 70 kDa heat shock protein family specifically recognize sulfoglycolipids: role in gamete recognition and mycoplasma-related infertility. J Cell Physiol. 1995 Oct;165(1):7–17. doi: 10.1002/jcp.1041650103. [DOI] [PubMed] [Google Scholar]
- Boulanger J., Petric M., Lingwood C., Law H., Roscoe M., Karmali M. Neutralization receptor-based immunoassay for detection of neutralizing antibodies to Escherichia coli verocytotoxin 1. J Clin Microbiol. 1990 Dec;28(12):2830–2833. doi: 10.1128/jcm.28.12.2830-2833.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd B., Lingwood C. Verotoxin receptor glycolipid in human renal tissue. Nephron. 1989;51(2):207–210. doi: 10.1159/000185286. [DOI] [PubMed] [Google Scholar]
- Buchner J. Supervising the fold: functional principles of molecular chaperones. FASEB J. 1996 Jan;10(1):10–19. [PubMed] [Google Scholar]
- Bukau B., Walker G. C. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol. 1989 May;171(5):2337–2346. doi: 10.1128/jb.171.5.2337-2346.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Busse J., Hartmann E., Lingwood C. A. Receptor affinity purification of a lipid-binding adhesin from Haemophilus influenzae. J Infect Dis. 1997 Jan;175(1):77–83. doi: 10.1093/infdis/175.1.77. [DOI] [PubMed] [Google Scholar]
- Craig E. A. Chaperones: helpers along the pathways to protein folding. Science. 1993 Jun 25;260(5116):1902–1903. doi: 10.1126/science.8100364. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Molecular chaperones. Unfolding protein folding. Nature. 1991 Jul 4;352(6330):17–18. doi: 10.1038/352017a0. [DOI] [PubMed] [Google Scholar]
- Dimmock N. J. Review article initial stages in infection with animal viruses. J Gen Virol. 1982 Mar;59(Pt 1):1–22. doi: 10.1099/0022-1317-59-1-1. [DOI] [PubMed] [Google Scholar]
- Dunn B. E., Roop R. M., 2nd, Sung C. C., Sharma S. A., Perez-Perez G. I., Blaser M. J. Identification and purification of a cpn60 heat shock protein homolog from Helicobacter pylori. Infect Immun. 1992 May;60(5):1946–1951. doi: 10.1128/iai.60.5.1946-1951.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huesca M., Borgia S., Hoffman P., Lingwood C. A. Acidic pH changes receptor binding specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization. Infect Immun. 1996 Jul;64(7):2643–2648. doi: 10.1128/iai.64.7.2643-2648.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishizuka I., Inomata M., Ueno K., Yamakawa T. Sulfated glyceroglycolipids in rat brain. Structure sulfation in vivo, and accumulation in whole brain during development. J Biol Chem. 1978 Feb 10;253(3):898–907. [PubMed] [Google Scholar]
- Korones D. N., Marshall G. S., Shapiro E. D. Outcome of children with occult bacteremia caused by Haemophilus influenzae type b. Pediatr Infect Dis J. 1992 Jul;11(7):516–520. doi: 10.1097/00006454-199207000-00002. [DOI] [PubMed] [Google Scholar]
- Koval S. F., Murray R. G. The isolation of surface array proteins from bacteria. Can J Biochem Cell Biol. 1984 Nov;62(11):1181–1189. doi: 10.1139/o84-152. [DOI] [PubMed] [Google Scholar]
- Krivan H. C., Olson L. D., Barile M. F., Ginsburg V., Roberts D. D. Adhesion of Mycoplasma pneumoniae to sulfated glycolipids and inhibition by dextran sulfate. J Biol Chem. 1989 Jun 5;264(16):9283–9288. [PubMed] [Google Scholar]
- Kusukawa N., Yura T. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 1988 Jul;2(7):874–882. doi: 10.1101/gad.2.7.874. [DOI] [PubMed] [Google Scholar]
- Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
- Lingwood C. A., Law H., Richardson S., Petric M., Brunton J. L., De Grandis S., Karmali M. Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem. 1987 Jun 25;262(18):8834–8839. [PubMed] [Google Scholar]
- Lingwood C. A., Murray R. K., Schachter H. The preparation of rabbit antiserum specific for mammalian testicular sulfogalactoglycerolipid. J Immunol. 1980 Feb;124(2):769–774. [PubMed] [Google Scholar]
- Lingwood C. A., Nutikka A. A novel chemical procedure for the selective removal of nonreducing terminal N-acetyl hexosamine residues from glycolipids. Anal Biochem. 1994 Feb 15;217(1):119–123. doi: 10.1006/abio.1994.1091. [DOI] [PubMed] [Google Scholar]
- Lingwood C. A., Quinn P. A., Wilansky S., Nutikka A., Ruhnke H. L., Miller R. B. Common sulfoglycolipid receptor for mycoplasmas involved in animal and human infertility. Biol Reprod. 1990 Oct;43(4):694–697. doi: 10.1095/biolreprod43.4.694. [DOI] [PubMed] [Google Scholar]
- Lingwood C., Schramayr S., Quinn P. Male germ cell specific sulfogalactoglycerolipid is recognized and degraded by mycoplasmas associated with male infertility. J Cell Physiol. 1990 Jan;142(1):170–176. doi: 10.1002/jcp.1041420121. [DOI] [PubMed] [Google Scholar]
- Olson L. D., Gilbert A. A. Characteristics of Mycoplasma hominis adhesion. J Bacteriol. 1993 May;175(10):3224–3227. doi: 10.1128/jb.175.10.3224-3227.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paek K. H., Walker G. C. Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol. 1987 Jan;169(1):283–290. doi: 10.1128/jb.169.1.283-290.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsey R. B., Nicholas H. J. Brain lipids. Adv Lipid Res. 1972;10:143–232. doi: 10.1016/b978-0-12-024910-7.50011-7. [DOI] [PubMed] [Google Scholar]
- Raulston J. E., Davis C. H., Schmiel D. H., Morgan M. W., Wyrick P. B. Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the hsp70 family of proteins. J Biol Chem. 1993 Nov 5;268(31):23139–23147. [PubMed] [Google Scholar]
- Sharon N., Eshdat Y., Silverblatt F. J., Ofek I. Bacterial adherence to cell surface sugars. Ciba Found Symp. 1981;80:119–141. doi: 10.1002/9780470720639.ch9. [DOI] [PubMed] [Google Scholar]
- St Geme J. W., 3rd, Falkow S., Barenkamp S. J. High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2875–2879. doi: 10.1073/pnas.90.7.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanphaichitr N., Smith J., Mongkolsirikieart S., Gradil C., Lingwood C. A. Role of a gamete-specific sulfoglycolipid immobilizing protein on mouse sperm-egg binding. Dev Biol. 1993 Mar;156(1):164–175. doi: 10.1006/dbio.1993.1067. [DOI] [PubMed] [Google Scholar]
- Tanphaichitr N., Tayabali A., Gradil C., Juneja S., Léveillé M. C., Lingwood C. A. Role of a germ cell-specific sulfolipid-immobilizing protein (SLIP1) in mouse in vivo fertilization. Mol Reprod Dev. 1992 May;32(1):17–22. doi: 10.1002/mrd.1080320104. [DOI] [PubMed] [Google Scholar]
- Uemura K., Yuzawa M., Taketomi T. Preparation and properties of antisera to glycolipid of guinea pig erythrocyte membrane. J Biochem. 1978 Apr;83(4):1199–1201. doi: 10.1093/oxfordjournals.jbchem.a132011. [DOI] [PubMed] [Google Scholar]
- Wynn R. M., Davie J. R., Cox R. P., Chuang D. T. Molecular chaperones: heat-shock proteins, foldases, and matchmakers. J Lab Clin Med. 1994 Jul;124(1):31–36. [PubMed] [Google Scholar]
- van Alphen L., Geelen-van den Broek L., Blaas L., van Ham M., Dankert J. Blocking of fimbria-mediated adherence of Haemophilus influenzae by sialyl gangliosides. Infect Immun. 1991 Dec;59(12):4473–4477. doi: 10.1128/iai.59.12.4473-4477.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]