Abstract
In vitro studies have suggested a role for interferon gamma (IFN-gamma) in host defense against disseminated candidiasis, but in vivo studies are inconclusive. We utilized homozygous IFN-gamma knockout (GKO) mice to determine if the cytokine is essential in host defense against this disease. Genotypes of mice were determined by PCR with specific primers for the normal or disrupted IFN-gamma gene. The GKO status of the mice was confirmed by an enzyme-linked immunosorbent assay, which showed no detectable IFN-gamma produced by their splenocytes stimulated by concanavalin A. To test the susceptibility of GKO mice to candidiasis, the animals were infected either intravenously (i.v.) or intragastrically (i.g.) with Candida albicans. GKO mice infected i.v. survived as long as wild-type (WT) mice and showed no difference in Candida CFU counts in liver, spleen, or kidneys compared to those for WT mice. When animals were given Candida i.g., at 3 h or at 10 or 21 days after infection, there was no dissemination of Candida to the lung, liver, spleen, or kidneys for either GKO or WT mice. There was no difference in Candida CFU counts recovered from the stomach or intestines between GKO and WT mice. Histological examination of the stomach cardial-atrium fold, where the fungus was located, showed that GKO mice did not have evidence of more tissue damage or fungal invasion than WT mice. Finally, the jejunum for both types of mice showed no evidence of tissue damage or fungal invasion. These studies indicate that IFN-gamma is not essential in host defense against C. albicans that originates from a mucosal site or that is given directly into the bloodstream in a mouse model.
Full Text
The Full Text of this article is available as a PDF (530.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amiri P., Haak-Frendscho M., Robbins K., McKerrow J. H., Stewart T., Jardieu P. Anti-immunoglobulin E treatment decreases worm burden and egg production in Schistosoma mansoni-infected normal and interferon gamma knockout mice. J Exp Med. 1994 Jul 1;180(1):43–51. doi: 10.1084/jem.180.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baghian A., Lee K. W. Systemic candidosis in beige mice. J Med Vet Mycol. 1989;27(1):51–55. doi: 10.1080/02681218980000071. [DOI] [PubMed] [Google Scholar]
- Balish E., Jensen J., Warner T., Brekke J., Leonard B. Mucosal and disseminated candidiasis in gnotobiotic SCID mice. J Med Vet Mycol. 1993;31(2):143–154. doi: 10.1080/02681219380000161. [DOI] [PubMed] [Google Scholar]
- Beno D. W., Stöver A. G., Mathews H. L. Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J Immunol. 1995 May 15;154(10):5273–5281. [PubMed] [Google Scholar]
- Bistoni F., Vecchiarelli A., Cenci E., Puccetti P., Marconi P., Cassone A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun. 1986 Feb;51(2):668–674. doi: 10.1128/iai.51.2.668-674.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blasi E., Farinelli S., Varesio L., Bistoni F. Augmentation of GG2EE macrophage cell line-mediated anti-Candida activity by gamma interferon, tumor necrosis factor, and interleukin-1. Infect Immun. 1990 Apr;58(4):1073–1077. doi: 10.1128/iai.58.4.1073-1077.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brawner D. L., Cutler J. E. Oral Candida albicans isolates from nonhospitalized normal carriers, immunocompetent hospitalized patients, and immunocompromised patients with or without acquired immunodeficiency syndrome. J Clin Microbiol. 1989 Jun;27(6):1335–1341. doi: 10.1128/jcm.27.6.1335-1341.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cenci E., Romani L., Vecchiarelli A., Puccetti P., Bistoni F. T cell subsets and IFN-gamma production in resistance to systemic candidosis in immunized mice. J Immunol. 1990 Jun 1;144(11):4333–4339. [PubMed] [Google Scholar]
- Crawford R. M., Finbloom D. S., Ohara J., Paul W. E., Meltzer M. S. B cell stimulatory factor-1 (interleukin 4) activates macrophages for increased tumoricidal activity and expression of Ia antigens. J Immunol. 1987 Jul 1;139(1):135–141. [PubMed] [Google Scholar]
- Crawford R. M., Leiby D. A., Green S. J., Nacy C. A., Fortier A. H., Meltzer M. S. Macrophage activation: a riddle of immunological resistance. Immunol Ser. 1994;60:29–46. [PubMed] [Google Scholar]
- Cutler J. E. Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice. J Reticuloendothel Soc. 1976 Feb;19(2):121–124. [PubMed] [Google Scholar]
- Cutler J. E., Brawner D. L., Hazen K. C., Jutila M. A. Characteristics of Candida albicans adherence to mouse tissues. Infect Immun. 1990 Jun;58(6):1902–1908. doi: 10.1128/iai.58.6.1902-1908.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., Stewart T. A. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993 Mar 19;259(5102):1739–1742. doi: 10.1126/science.8456300. [DOI] [PubMed] [Google Scholar]
- Denning D. W. Epidemiology and pathogenesis of systemic fungal infections in the immunocompromised host. J Antimicrob Chemother. 1991 Oct;28 (Suppl B):1–16. doi: 10.1093/jac/28.suppl_b.1. [DOI] [PubMed] [Google Scholar]
- Diamond R. D., Lyman C. A., Wysong D. R. Disparate effects of interferon-gamma and tumor necrosis factor-alpha on early neutrophil respiratory burst and fungicidal responses to Candida albicans hyphae in vitro. J Clin Invest. 1991 Feb;87(2):711–720. doi: 10.1172/JCI115050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Economou J. S., McBride W. H., Essner R., Rhoades K., Golub S., Holmes E. C., Morton D. L. Tumour necrosis factor production by IL-2-activated macrophages in vitro and in vivo. Immunology. 1989 Aug;67(4):514–519. [PMC free article] [PubMed] [Google Scholar]
- Fabian I., Kletter Y., Mor S., Geller-Bernstein C., Ben-Yaakov M., Volovitz B., Golde D. W. Activation of human eosinophil and neutrophil functions by haematopoietic growth factors: comparisons of IL-1, IL-3, IL-5 and GM-CSF. Br J Haematol. 1992 Feb;80(2):137–143. doi: 10.1111/j.1365-2141.1992.tb08890.x. [DOI] [PubMed] [Google Scholar]
- Flynn J. L., Chan J., Triebold K. J., Dalton D. K., Stewart T. A., Bloom B. R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993 Dec 1;178(6):2249–2254. doi: 10.1084/jem.178.6.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garner R. E., Kuruganti U., Czarniecki C. W., Chiu H. H., Domer J. E. In vivo immune responses to Candida albicans modified by treatment with recombinant murine gamma interferon. Infect Immun. 1989 Jun;57(6):1800–1808. doi: 10.1128/iai.57.6.1800-1808.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazzinelli R. T., Eltoum I., Wynn T. A., Sher A. Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol. 1993 Oct 1;151(7):3672–3681. [PubMed] [Google Scholar]
- Goldway M., Teff D., Schmidt R., Oppenheim A. B., Koltin Y. Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother. 1995 Feb;39(2):422–426. doi: 10.1128/aac.39.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Y., Cutler J. E. Antibody response that protects against disseminated candidiasis. Infect Immun. 1995 Jul;63(7):2714–2719. doi: 10.1128/iai.63.7.2714-2719.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashimoto T. In vitro study of contact-mediated killing of Candida albicans hyphae by activated murine peritoneal macrophages in a serum-free medium. Infect Immun. 1991 Oct;59(10):3555–3561. doi: 10.1128/iai.59.10.3555-3561.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazen K. C., Brawner D. L., Riesselman M. H., Jutila M. A., Cutler J. E. Differential adherence of hydrophobic and hydrophilic Candida albicans yeast cells to mouse tissues. Infect Immun. 1991 Mar;59(3):907–912. doi: 10.1128/iai.59.3.907-912.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvis W. R., Martone W. J. Predominant pathogens in hospital infections. J Antimicrob Chemother. 1992 Apr;29 (Suppl A):19–24. doi: 10.1093/jac/29.suppl_a.19. [DOI] [PubMed] [Google Scholar]
- Jensen J., Balish E. Enhancement of susceptibility of CB-17 mice to systemic candidiasis by poly(I . C)-induced interferon. Infect Immun. 1993 Aug;61(8):3530–3532. doi: 10.1128/iai.61.8.3530-3532.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen J., Warner T., Balish E. The role of phagocytic cells in resistance to disseminated candidiasis in granulocytopenic mice. J Infect Dis. 1994 Oct;170(4):900–905. doi: 10.1093/infdis/170.4.900. [DOI] [PubMed] [Google Scholar]
- Kullberg B. J., van 't Wout J. W., Hoogstraten C., van Furth R. Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis. 1993 Aug;168(2):436–443. doi: 10.1093/infdis/168.2.436. [DOI] [PubMed] [Google Scholar]
- Lee K. W., Balish E. Systemic candidosis in germfree, flora-defined and conventional nude and thymus-bearing mice. J Reticuloendothel Soc. 1981 Jan;29(1):71–77. [PubMed] [Google Scholar]
- Li R. K., Cutler J. E. A cell surface/plasma membrane antigen of Candida albicans. J Gen Microbiol. 1991 Mar;137(3):455–464. doi: 10.1099/00221287-137-3-455. [DOI] [PubMed] [Google Scholar]
- Li R. K., Cutler J. E. Chemical definition of an epitope/adhesin molecule on Candida albicans. J Biol Chem. 1993 Aug 25;268(24):18293–18299. [PubMed] [Google Scholar]
- Maksymiuk A. W., Thongprasert S., Hopfer R., Luna M., Fainstein V., Bodey G. P. Systemic candidiasis in cancer patients. Am J Med. 1984 Oct 30;77(4D):20–27. [PubMed] [Google Scholar]
- Marquis G., Garzon S., Montplaisir S., Strykowski H., Benhamou N. Histochemical and immunochemical study of the fate of Candida albicans inside human neutrophil phagolysosomes. J Leukoc Biol. 1991 Dec;50(6):587–599. doi: 10.1002/jlb.50.6.587. [DOI] [PubMed] [Google Scholar]
- Maródi L., Schreiber S., Anderson D. C., MacDermott R. P., Korchak H. M., Johnston R. B., Jr Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J Clin Invest. 1993 Jun;91(6):2596–2601. doi: 10.1172/JCI116498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews R., Hodgetts S., Burnie J. Preliminary assessment of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis. J Infect Dis. 1995 Jun;171(6):1668–1671. doi: 10.1093/infdis/171.6.1668. [DOI] [PubMed] [Google Scholar]
- Mazzolla R., Barluzzi R., Romani L., Mosci P., Bistoni F. Anti-Candida resistance in the mouse brain and effect of intracerebral administration of interleukin 1. J Gen Microbiol. 1991 Aug;137(8):1799–1804. doi: 10.1099/00221287-137-8-1799. [DOI] [PubMed] [Google Scholar]
- Mourad S., Friedman L. Passive immunization of mice against Candida albicans. Sabouraudia. 1968 Feb;6(2):103–105. [PubMed] [Google Scholar]
- Numerof R. P., Aronson F. R., Mier J. W. IL-2 stimulates the production of IL-1 alpha and IL-1 beta by human peripheral blood mononuclear cells. J Immunol. 1988 Dec 15;141(12):4250–4257. [PubMed] [Google Scholar]
- Phillips W. A., Croatto M., Hamilton J. A. Priming the macrophage respiratory burst with IL-4: enhancement with TNF-alpha but inhibition by IFN-gamma. Immunology. 1990 Aug;70(4):498–503. [PMC free article] [PubMed] [Google Scholar]
- Pope L. M., Cole G. T., Guentzel M. N., Berry L. J. Systemic and gastrointestinal candidiasis of infant mice after intragastric challenge. Infect Immun. 1979 Aug;25(2):702–707. doi: 10.1128/iai.25.2.702-707.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian Q., Jutila M. A., Van Rooijen N., Cutler J. E. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol. 1994 May 15;152(10):5000–5008. [PubMed] [Google Scholar]
- Raymond J. R. Amphotericin B nephrotoxicity. Am Fam Physician. 1988 Aug;38(2):199–203. [PubMed] [Google Scholar]
- Rhodes J., Ivanyi J., Cozens P. Antigen presentation by human monocytes: effects of modifying major histocompatibility complex class II antigen expression and interleukin 1 production by using recombinant interferons and corticosteroids. Eur J Immunol. 1986 Apr;16(4):370–375. doi: 10.1002/eji.1830160410. [DOI] [PubMed] [Google Scholar]
- Romani L., Cenci E., Mencacci A., Spaccapelo R., Grohmann U., Puccetti P., Bistoni F. Gamma interferon modifies CD4+ subset expression in murine candidiasis. Infect Immun. 1992 Nov;60(11):4950–4952. doi: 10.1128/iai.60.11.4950-4952.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romani L., Mencacci A., Cenci E., Spaccapelo R., Mosci P., Puccetti P., Bistoni F. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. J Immunol. 1993 Feb 1;150(3):925–931. [PubMed] [Google Scholar]
- Sieck T. G., Moors M. A., Buckley H. R., Blank K. J. Protection against murine disseminated candidiasis mediated by a Candida albicans-specific T-cell line. Infect Immun. 1993 Aug;61(8):3540–3543. doi: 10.1128/iai.61.8.3540-3543.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. D., Lamerson C. L., Banks S. M., Saini S. S., Wahl L. M., Calderone R. A., Wahl S. M. Granulocyte-macrophage colony-stimulating factor augments human monocyte fungicidal activity for Candida albicans. J Infect Dis. 1990 May;161(5):999–1005. doi: 10.1093/infdis/161.5.999. [DOI] [PubMed] [Google Scholar]
- Stevenhagen A., van Furth R. Interferon-gamma activates the oxidative killing of Candida albicans by human granulocytes. Clin Exp Immunol. 1993 Jan;91(1):170–175. doi: 10.1111/j.1365-2249.1993.tb03374.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens D. A., Odds F. C., Scherer S. Application of DNA typing methods to Candida albicans epidemiology and correlations with phenotype. Rev Infect Dis. 1990 Mar-Apr;12(2):258–266. doi: 10.1093/clinids/12.2.258. [DOI] [PubMed] [Google Scholar]
- Tavares D., Ferreira P., Vilanova M., Videira A., Arala-Chaves M. Immunoprotection against systemic candidiasis in mice. Int Immunol. 1995 May;7(5):785–796. doi: 10.1093/intimm/7.5.785. [DOI] [PubMed] [Google Scholar]
- Verdeguer A., Fernández J. M., Esquembre C., Ferris J., Ruiz J. G., Castel V. Hepatosplenic candidiasis in children with acute leukemia. Cancer. 1990 Feb 15;65(4):874–877. doi: 10.1002/1097-0142(19900215)65:4<874::aid-cncr2820650408>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Wenzel R. P. Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis. 1995 Jun;20(6):1531–1534. doi: 10.1093/clinids/20.6.1531. [DOI] [PubMed] [Google Scholar]
- Worthington M., Hasenclever H. F. Effect of an interferon stimulator, polyinosinic: polycytidylic acid, on experimental fungus infections. Infect Immun. 1972 Feb;5(2):199–202. doi: 10.1128/iai.5.2.199-202.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van 't Wout J. W., Poell R., van Furth R. The role of BCG/PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand J Immunol. 1992 Nov;36(5):713–719. doi: 10.1111/j.1365-3083.1992.tb03132.x. [DOI] [PubMed] [Google Scholar]