Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 May;65(5):1767–1772. doi: 10.1128/iai.65.5.1767-1772.1997

The role of nitric oxide in experimental murine sepsis due to pyrogenic exotoxin A-producing Streptococcus pyogenes.

S Sriskandan 1, D Moyes 1, L K Buttery 1, J Wilkinson 1, T J Evans 1, J Polak 1, J Cohen 1
PMCID: PMC175214  PMID: 9125560

Abstract

Nitric oxide (NO) produced by inducible NO synthase (iNOS) mediates hypotension in endotoxemia. In this study, NO induction by a toxin-producing Streptococcus pyogenes isolate, H250, and by recombinant streptococcal pyrogenic exotoxin A (rSPEA) has been examined, both in vitro and in vivo. Streptococcal supernatants, but not rSPEA, induce production of nitrite by murine macrophages when both are coincubated with gamma interferon. Intraperitoneal injection of rSPEA did not cause significant production of NO. However, an elevated level of nitrate in serum was detected in a model of streptococcal fasciitis due to live H250. iNOS was localized to Kupffer cells, hepatocytes, and renal tubular cells by immunostaining. Administration of a NOS inhibitor, N(G)-monomethyl-L-arginine (L-NMMA), reduced peak concentrations of nitrate in serum but did not affect survival. NO is induced by H250, both in vitro and in vivo, mainly via SPEA-independent mechanisms. In this model, iNOS is expressed predominantly in the liver. Furthermore, in this model L-NMMA is not protective.

Full Text

The Full Text of this article is available as a PDF (364.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler H., Peterhans E., Nicolet J., Jungi T. W. Inducible L-arginine-dependent nitric oxide synthase activity in bovine bone marrow-derived macrophages. Biochem Biophys Res Commun. 1994 Jan 28;198(2):510–515. doi: 10.1006/bbrc.1994.1075. [DOI] [PubMed] [Google Scholar]
  2. Bohach G. A., Fast D. J., Nelson R. D., Schlievert P. M. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol. 1990;17(4):251–272. doi: 10.3109/10408419009105728. [DOI] [PubMed] [Google Scholar]
  3. Buttery L. D., Evans T. J., Springall D. R., Carpenter A., Cohen J., Polak J. M. Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated rats. Lab Invest. 1994 Nov;71(5):755–764. [PubMed] [Google Scholar]
  4. Evans T. J., Strivens E., Carpenter A., Cohen J. Differences in cytokine response and induction of nitric oxide synthase in endotoxin-resistant and endotoxin-sensitive mice after intravenous gram-negative infection. J Immunol. 1993 Jun 1;150(11):5033–5040. [PubMed] [Google Scholar]
  5. Evans T., Carpenter A., Silva A., Cohen J. Inhibition of nitric oxide synthase in experimental gram-negative sepsis. J Infect Dis. 1994 Feb;169(2):343–349. doi: 10.1093/infdis/169.2.343. [DOI] [PubMed] [Google Scholar]
  6. Florquin S., Amraoui Z., Dubois C., Decuyper J., Goldman M. The protective role of endogenously synthesized nitric oxide in staphylococcal enterotoxin B-induced shock in mice. J Exp Med. 1994 Sep 1;180(3):1153–1158. doi: 10.1084/jem.180.3.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geerdes H. F., Ziegler D., Lode H., Hund M., Loehr A., Fangmann W., Wagner J. Septicemia in 980 patients at a university hospital in Berlin: prospective studies during 4 selected years between 1979 and 1989. Clin Infect Dis. 1992 Dec;15(6):991–1002. doi: 10.1093/clind/15.6.991. [DOI] [PubMed] [Google Scholar]
  8. Gjörloff A., Fischer H., Hedlund G., Hansson J., Kenney J. S., Allison A. C., Sjögren H. O., Dohlsten M. Induction of interleukin-1 in human monocytes by the superantigen staphylococcal enterotoxin A requires the participation of T cells. Cell Immunol. 1991 Oct 1;137(1):61–71. doi: 10.1016/0008-8749(91)90056-h. [DOI] [PubMed] [Google Scholar]
  9. Goodrum K. J., McCormick L. L., Schneider B. Group B streptococcus-induced nitric oxide production in murine macrophages is CR3 (CD11b/CD18) dependent. Infect Immun. 1994 Aug;62(8):3102–3107. doi: 10.1128/iai.62.8.3102-3107.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  11. Hackett S. P., Stevens D. L. Streptococcal toxic shock syndrome: synthesis of tumor necrosis factor and interleukin-1 by monocytes stimulated with pyrogenic exotoxin A and streptolysin O. J Infect Dis. 1992 May;165(5):879–885. doi: 10.1093/infdis/165.5.879. [DOI] [PubMed] [Google Scholar]
  12. Heumann D., Barras C., Severin A., Glauser M. P., Tomasz A. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immun. 1994 Jul;62(7):2715–2721. doi: 10.1128/iai.62.7.2715-2721.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kieft H., Hoepelman A. I., Zhou W., Rozenberg-Arska M., Struyvenberg A., Verhoef J. The sepsis syndrome in a Dutch university hospital. Clinical observations. Arch Intern Med. 1993 Oct 11;153(19):2241–2247. [PubMed] [Google Scholar]
  14. Knöll H., Holm S. E., Gerlach D., Köhler W. Tissue cages for study of experimental streptococcal infection in rabbits. I. Production of erythrogenic toxins in vivo. Immunobiology. 1982;162(2):128–140. doi: 10.1016/S0171-2985(11)80024-0. [DOI] [PubMed] [Google Scholar]
  15. Kum W. W., Laupland K. B., See R. H., Chow A. W. Improved purification and biologic activities of staphylococcal toxic shock syndrome toxin 1. J Clin Microbiol. 1993 Oct;31(10):2654–2660. doi: 10.1128/jcm.31.10.2654-2660.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lonchampt M. O., Auguet M., Delaflotte S., Goulin-Schulz J., Chabrier P. E., Braquet P. Lipoteichoic acid: a new inducer of nitric oxide synthase. J Cardiovasc Pharmacol. 1992;20 (Suppl 12):S145–S147. doi: 10.1097/00005344-199204002-00041. [DOI] [PubMed] [Google Scholar]
  17. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  18. Mosier D. E. Separation of macrophages on plastic and glass surfaces. Methods Enzymol. 1984;108:294–297. doi: 10.1016/s0076-6879(84)08094-0. [DOI] [PubMed] [Google Scholar]
  19. Nathan C. F., Hibbs J. B., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. doi: 10.1016/0952-7915(91)90079-g. [DOI] [PubMed] [Google Scholar]
  20. Norrby-Teglund A., Norgren M., Holm S. E., Andersson U., Andersson J. Similar cytokine induction profiles of a novel streptococcal exotoxin, MF, and pyrogenic exotoxins A and B. Infect Immun. 1994 Sep;62(9):3731–3738. doi: 10.1128/iai.62.9.3731-3738.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parrillo J. E., Burch C., Shelhamer J. H., Parker M. M., Natanson C., Schuette W. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest. 1985 Oct;76(4):1539–1553. doi: 10.1172/JCI112135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SELBIE F. R., SIMON R. D. Virulence to mice of Staphylococcus pyogenes: its measurement and its relation to certain in vitro properties. Br J Exp Pathol. 1952 Aug;33(4):315–326. [PMC free article] [PubMed] [Google Scholar]
  23. Shi Y., Li H. Q., Shen C. K., Wang J. H., Qin S. W., Liu R., Pan J. Plasma nitric oxide levels in newborn infants with sepsis. J Pediatr. 1993 Sep;123(3):435–438. doi: 10.1016/s0022-3476(05)81753-6. [DOI] [PubMed] [Google Scholar]
  24. Shu S. Y., Ju G., Fan L. Z. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett. 1988 Feb 29;85(2):169–171. doi: 10.1016/0304-3940(88)90346-1. [DOI] [PubMed] [Google Scholar]
  25. Sriskandan S., Evans T. J., Cohen J. Bacterial superantigen-induced human lymphocyte responses are nitric oxide dependent and mediated by IL-12 and IFN-gamma. J Immunol. 1996 Apr 1;156(7):2430–2435. [PubMed] [Google Scholar]
  26. Sriskandan S., Moyes D., Buttery L. K., Krausz T., Evans T. J., Polak J., Cohen J. Streptococcal pyrogenic exotoxin A release, distribution, and role in a murine model of fasciitis and multiorgan failure due to Streptococcus pyogenes. J Infect Dis. 1996 Jun;173(6):1399–1407. doi: 10.1093/infdis/173.6.1399. [DOI] [PubMed] [Google Scholar]
  27. Stevens D. L. Invasive group A streptococcus infections. Clin Infect Dis. 1992 Jan;14(1):2–11. doi: 10.1093/clinids/14.1.2. [DOI] [PubMed] [Google Scholar]
  28. Talkington D. F., Schwartz B., Black C. M., Todd J. K., Elliott J., Breiman R. F., Facklam R. R. Association of phenotypic and genotypic characteristics of invasive Streptococcus pyogenes isolates with clinical components of streptococcal toxic shock syndrome. Infect Immun. 1993 Aug;61(8):3369–3374. doi: 10.1128/iai.61.8.3369-3374.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor-Robinson A. W., Liew F. Y., Severn A., Xu D., McSorley S. J., Garside P., Padron J., Phillips R. S. Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol. 1994 Apr;24(4):980–984. doi: 10.1002/eji.1830240430. [DOI] [PubMed] [Google Scholar]
  30. Teale D. M., Atkinson A. M. Inhibition of nitric oxide synthesis improves survival in a murine peritonitis model of sepsis that is not cured by antibiotics alone. J Antimicrob Chemother. 1992 Dec;30(6):839–842. doi: 10.1093/jac/30.6.839. [DOI] [PubMed] [Google Scholar]
  31. Thiemermann C., Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol. 1990 Jul 17;182(3):591–595. doi: 10.1016/0014-2999(90)90062-b. [DOI] [PubMed] [Google Scholar]
  32. Timmerman C. P., Mattsson E., Martinez-Martinez L., De Graaf L., Van Strijp J. A., Verbrugh H. A., Verhoef J., Fleer A. Induction of release of tumor necrosis factor from human monocytes by staphylococci and staphylococcal peptidoglycans. Infect Immun. 1993 Oct;61(10):4167–4172. doi: 10.1128/iai.61.10.4167-4172.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tomai M., Kotb M., Majumdar G., Beachey E. H. Superantigenicity of streptococcal M protein. J Exp Med. 1990 Jul 1;172(1):359–362. doi: 10.1084/jem.172.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Watanabe-Ohnishi R., Low D. E., McGeer A., Stevens D. L., Schlievert P. M., Newton D., Schwartz B., Kreiswirth B., Kotb M. Selective depletion of V beta-bearing T cells in patients with severe invasive group A streptococcal infections and streptococcal toxic shock syndrome. Ontario Streptococcal Study Project. J Infect Dis. 1995 Jan;171(1):74–84. doi: 10.1093/infdis/171.1.74. [DOI] [PubMed] [Google Scholar]
  35. Zembowicz A., Vane J. R. Induction of nitric oxide synthase activity by toxic shock syndrome toxin 1 in a macrophage-monocyte cell line. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2051–2055. doi: 10.1073/pnas.89.6.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES