Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1997 Jan;56(1):17–21. doi: 10.1136/ard.56.1.17

Growth in infancy and bone mass in later life

C Cooper 1, C Fall 1, P Egger 1, R Hobbs 1, R Eastell 1, D Barker 1
PMCID: PMC1752249  PMID: 9059135

Abstract

OBJECTIVE—To examine the association between weight in infancy and bone mass during the seventh decade of life in a population based cohort for which detailed birth and childhood records were preserved.
METHODS—189 women and 224 men who were aged 63-73 years and were born in East Hertfordshire underwent bone densitometry by dual energy x ray absorptiometry. Measurements were also made of serum osteocalcin and urinary excretion of type 1 collagen cross linked N-telopeptide.
RESULTS—There were statistically significant associations between weight at 1 year and bone mineral content (but not bone mineral density) at the spine (P < 0.02) and femoral neck (P < 0.01) among women, and spine (P < 0.03) among men. Although serum osteocalcin was negatively correlated with bone mineral density at both sites among men and women, infant weight was not significantly associated with either biochemical marker of bone turnover.
CONCLUSIONS—These data confirm our previous observations that growth in infancy is associated with skeletal size in adulthood, and suggest that skeletal growth may be programmed during intrauterine or early postnatal life.



Full Text

The Full Text of this article is available as a PDF (117.0 KB).

graphic file with name 96173.f1.jpg

Weight at 1 year and bone mineral content of the lumbar spine (LS-BMC) and femoral neck (FN-BMC) among 224 men and 189 women born in Hertfordshire during 1920-1930. 

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRACLOUGH C. A. Production of anovulatory, sterile rats by single injections of testosterone propionate. Endocrinology. 1961 Jan;68:62–67. doi: 10.1210/endo-68-1-62. [DOI] [PubMed] [Google Scholar]
  2. Barker D. J. Fetal origins of coronary heart disease. BMJ. 1995 Jul 15;311(6998):171–174. doi: 10.1136/bmj.311.6998.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker D. J., Gluckman P. D., Godfrey K. M., Harding J. E., Owens J. A., Robinson J. S. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993 Apr 10;341(8850):938–941. doi: 10.1016/0140-6736(93)91224-a. [DOI] [PubMed] [Google Scholar]
  4. Barker D. J., Meade T. W., Fall C. H., Lee A., Osmond C., Phipps K., Stirling Y. Relation of fetal and infant growth to plasma fibrinogen and factor VII concentrations in adult life. BMJ. 1992 Jan 18;304(6820):148–152. doi: 10.1136/bmj.304.6820.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barker D. J., Winter P. D., Osmond C., Margetts B., Simmonds S. J. Weight in infancy and death from ischaemic heart disease. Lancet. 1989 Sep 9;2(8663):577–580. doi: 10.1016/s0140-6736(89)90710-1. [DOI] [PubMed] [Google Scholar]
  6. Carter D. R., Bouxsein M. L., Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992 Feb;7(2):137–145. doi: 10.1002/jbmr.5650070204. [DOI] [PubMed] [Google Scholar]
  7. Cooper C., Cawley M., Bhalla A., Egger P., Ring F., Morton L., Barker D. Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res. 1995 Jun;10(6):940–947. doi: 10.1002/jbmr.5650100615. [DOI] [PubMed] [Google Scholar]
  8. Cooper C. Epidemiology and public health impact of osteoporosis. Baillieres Clin Rheumatol. 1993 Oct;7(3):459–477. doi: 10.1016/s0950-3579(05)80073-1. [DOI] [PubMed] [Google Scholar]
  9. Cooper C., Kuh D., Egger P., Wadsworth M., Barker D. Childhood growth and age at menarche. Br J Obstet Gynaecol. 1996 Aug;103(8):814–817. doi: 10.1111/j.1471-0528.1996.tb09879.x. [DOI] [PubMed] [Google Scholar]
  10. Cummings S. R., Marcus R., Palermo L., Ensrud K. E., Genant H. K. Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1994 Sep;9(9):1429–1432. doi: 10.1002/jbmr.5650090915. [DOI] [PubMed] [Google Scholar]
  11. Delmas P. D., Stenner D., Wahner H. W., Mann K. G., Riggs B. L. Increase in serum bone gamma-carboxyglutamic acid protein with aging in women. Implications for the mechanism of age-related bone loss. J Clin Invest. 1983 May;71(5):1316–1321. doi: 10.1172/JCI110882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Egger P., Duggleby S., Hobbs R., Fall C., Cooper C. Cigarette smoking and bone mineral density in the elderly. J Epidemiol Community Health. 1996 Feb;50(1):47–50. doi: 10.1136/jech.50.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fall C. H., Vijayakumar M., Barker D. J., Osmond C., Duggleby S. Weight in infancy and prevalence of coronary heart disease in adult life. BMJ. 1995 Jan 7;310(6971):17–19. doi: 10.1136/bmj.310.6971.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Faulkner K. G., McClung M., Cummings S. R. Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res. 1994 Jul;9(7):1065–1070. doi: 10.1002/jbmr.5650090714. [DOI] [PubMed] [Google Scholar]
  15. Gilsanz V., Boechat M. I., Gilsanz R., Loro M. L., Roe T. F., Goodman W. G. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology. 1994 Mar;190(3):678–682. doi: 10.1148/radiology.190.3.8115610. [DOI] [PubMed] [Google Scholar]
  16. Goldstein H. Factors related to birth weight and perinatal mortality. Br Med Bull. 1981 Sep;37(3):259–264. doi: 10.1093/oxfordjournals.bmb.a071712. [DOI] [PubMed] [Google Scholar]
  17. Guo S. S., Roche A. F., Chumlea W. C., Gardner J. D., Siervogel R. M. The predictive value of childhood body mass index values for overweight at age 35 y. Am J Clin Nutr. 1994 Apr;59(4):810–819. doi: 10.1093/ajcn/59.4.810. [DOI] [PubMed] [Google Scholar]
  18. Hales C. N., Barker D. J., Clark P. M., Cox L. J., Fall C., Osmond C., Winter P. D. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991 Oct 26;303(6809):1019–1022. doi: 10.1136/bmj.303.6809.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hamed H. M., Purdie D. W., Ramsden C. S., Carmichael B., Steel S. A., Howey S. Influence of birth weight on adult bone mineral density. Osteoporos Int. 1993 Jan;3(1):1–2. doi: 10.1007/BF01623168. [DOI] [PubMed] [Google Scholar]
  20. Hansen M. A. Assessment of age and risk factors on bone density and bone turnover in healthy premenopausal women. Osteoporos Int. 1994 May;4(3):123–128. doi: 10.1007/BF01623056. [DOI] [PubMed] [Google Scholar]
  21. Hanson D. A., Weis M. A., Bollen A. M., Maslan S. L., Singer F. R., Eyre D. R. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res. 1992 Nov;7(11):1251–1258. doi: 10.1002/jbmr.5650071119. [DOI] [PubMed] [Google Scholar]
  22. Kelly P. J., Pocock N. A., Sambrook P. N., Eisman J. A. Age and menopause-related changes in indices of bone turnover. J Clin Endocrinol Metab. 1989 Dec;69(6):1160–1165. doi: 10.1210/jcem-69-6-1160. [DOI] [PubMed] [Google Scholar]
  23. Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991;156:38–55. [PubMed] [Google Scholar]
  24. Morrison N. A., Qi J. C., Tokita A., Kelly P. J., Crofts L., Nguyen T. V., Sambrook P. N., Eisman J. A. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284–287. doi: 10.1038/367284a0. [DOI] [PubMed] [Google Scholar]
  25. Sowers M. R., Clark M. K., Hollis B., Wallace R. B., Jannausch M. Radial bone mineral density in pre- and perimenopausal women: a prospective study of rates and risk factors for loss. J Bone Miner Res. 1992 Jun;7(6):647–657. doi: 10.1002/jbmr.5650070609. [DOI] [PubMed] [Google Scholar]
  26. Szulc P., Arlot M., Chapuy M. C., Duboeuf F., Meunier P. J., Delmas P. D. Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res. 1994 Oct;9(10):1591–1595. doi: 10.1002/jbmr.5650091012. [DOI] [PubMed] [Google Scholar]
  27. Theintz G., Buchs B., Rizzoli R., Slosman D., Clavien H., Sizonenko P. C., Bonjour J. P. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992 Oct;75(4):1060–1065. doi: 10.1210/jcem.75.4.1400871. [DOI] [PubMed] [Google Scholar]
  28. WIDDOWSON E. M., MCCANCE R. A. THE EFFECT OF FINITE PERIODS OF UNDERNUTRITION AT DIFFERENT AGES ON THE COMPOSITION AND SUBSEQUENT DEVELOPMENT OF THE RAT. Proc R Soc Lond B Biol Sci. 1963 Oct 22;158:329–342. doi: 10.1098/rspb.1963.0051. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES