Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 May;65(5):1830–1835. doi: 10.1128/iai.65.5.1830-1835.1997

Purification and characterization of a hemolysin produced by Vibrio mimicus.

S Miyoshi 1, K Sasahara 1, S Akamatsu 1, M M Rahman 1, T Katsu 1, K Tomochika 1, S Shinoda 1
PMCID: PMC175225  PMID: 9125568

Abstract

Vibrio mimicus is a causative agent of human gastroenteritis. This pathogen secretes a pore-forming toxin, V. mimicus hemolysin (VMH), which causes hemolysis by three sequential steps: binding to an erythrocyte membrane, formation of a transmembrane pore, and disruption of the cell membrane. VMH with a molecular mass of 63 kDa was purified by ammonium sulfate precipitation and column chromatography with phenyl Sepharose HP and Superose 6 HR. The hemolytic reaction induced by VMH continued up to disruption of all erythrocytes in the assay system. Moreover, VMH that bound preliminarily to erythrocyte ghosts showed a sufficient ability to attack intact erythrocytes. These results suggest reversible binding of the toxin molecule to the membrane. The final cell-disrupting stage was effectively inhibited by various divalent cations. Additionally, some cations, such as Zn2+ and Cu2+, blocked the pore-forming stage at high concentrations. Although VMH could disrupt all kinds of mammalian erythrocytes tested, those from horses were most sensitive to the hemolysin. Horse erythrocytes were found to have the most toxin-binding sites and to be hemolyzed by the least amount of membrane-bound toxin molecules, suggesting that toxin binding to and pore formation on erythrocytes are more effective in horses than in other mammals. Purified VMH induced fluid accumulation in a ligated rabbit ileal loop in a dose-dependent manner. In addition, the antibody against the hemolysin obviously reduced enteropathogenicity of living V. mimicus cells. These findings clearly demonstrate that VMH is probably involved in the virulence of this human pathogen.

Full Text

The Full Text of this article is available as a PDF (625.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhakdi S., Bayley H., Valeva A., Walev I., Walker B., Kehoe M., Palmer M. Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol. 1996 Feb;165(2):73–79. doi: 10.1007/s002030050300. [DOI] [PubMed] [Google Scholar]
  2. Chowdhury M. A., Aziz K. M., Kay B. A., Rahim Z. Toxin production by Vibrio mimicus strains isolated from human and environmental sources in Bangladesh. J Clin Microbiol. 1987 Nov;25(11):2200–2203. doi: 10.1128/jcm.25.11.2200-2203.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chowdhury M. A., Miyoshi S., Shinoda S. Purification and characterization of a protease produced by Vibrio mimicus. Infect Immun. 1990 Dec;58(12):4159–4162. doi: 10.1128/iai.58.12.4159-4162.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chowdhury M. A., Miyoshi S., Shinoda S. Role of Vibrio mimicus protease in enterotoxigenicity. J Diarrhoeal Dis Res. 1991 Dec;9(4):332–334. [PubMed] [Google Scholar]
  5. Davis B. R., Fanning G. R., Madden J. M., Steigerwalt A. G., Bradford H. B., Jr, Smith H. L., Jr, Brenner D. J. Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J Clin Microbiol. 1981 Dec;14(6):631–639. doi: 10.1128/jcm.14.6.631-639.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geoffroy C., Raveneau J., Beretti J. L., Lecroisey A., Vazquez-Boland J. A., Alouf J. E., Berche P. Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes. Infect Immun. 1991 Jul;59(7):2382–2388. doi: 10.1128/iai.59.7.2382-2388.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gray L. D., Kreger A. S. Purification and characterization of an extracellular cytolysin produced by Vibrio vulnificus. Infect Immun. 1985 Apr;48(1):62–72. doi: 10.1128/iai.48.1.62-72.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gyobu Y., Kodama H., Uetake H. Production and partial purification of a fluid-accumulating factor of non-O1 Vibrio cholerae. Microbiol Immunol. 1988;32(6):565–577. doi: 10.1111/j.1348-0421.1988.tb01418.x. [DOI] [PubMed] [Google Scholar]
  9. Hall R. H., Drasar B. S. Vibrio cholerae HlyA hemolysin is processed by proteolysis. Infect Immun. 1990 Oct;58(10):3375–3379. doi: 10.1128/iai.58.10.3375-3379.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoge C. W., Watsky D., Peeler R. N., Libonati J. P., Israel E., Morris J. G., Jr Epidemiology and spectrum of Vibrio infections in a Chesapeake Bay community. J Infect Dis. 1989 Dec;160(6):985–993. doi: 10.1093/infdis/160.6.985. [DOI] [PubMed] [Google Scholar]
  11. Ichinose Y., Yamamoto K., Nakasone N., Tanabe M. J., Takeda T., Miwatani T., Iwanaga M. Enterotoxicity of El Tor-like hemolysin of non-O1 Vibrio cholerae. Infect Immun. 1987 May;55(5):1090–1093. doi: 10.1128/iai.55.5.1090-1093.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katsu T., Kobayashi H., Fujita Y. Mode of action of gramicidin S on Escherichia coli membrane. Biochim Biophys Acta. 1986 Sep 11;860(3):608–619. doi: 10.1016/0005-2736(86)90560-2. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lin Z., Kumagai K., Baba K., Mekalanos J. J., Nishibuchi M. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol. 1993 Jun;175(12):3844–3855. doi: 10.1128/jb.175.12.3844-3855.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu J. W., Blumenthal K. M. Membrane damage by Cerebratulus lacteus cytolysin A-III. Effects of monovalent and divalent cations on A-III hemolytic activity. Biochim Biophys Acta. 1988 Jan 13;937(1):153–160. doi: 10.1016/0005-2736(88)90237-4. [DOI] [PubMed] [Google Scholar]
  17. Lorand L., Weissmann L. B., Epel D. L., Bruner-Lorand J. Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4479–4481. doi: 10.1073/pnas.73.12.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manno S., Takakuwa Y., Nagao K., Mohandas N. Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J Biol Chem. 1995 Mar 10;270(10):5659–5665. doi: 10.1074/jbc.270.10.5659. [DOI] [PubMed] [Google Scholar]
  19. Miyake M., Honda T., Miwatani T. Effects of divalent cations and saccharides on Vibrio metschnikovii cytolysin-induced hemolysis of rabbit erythrocytes. Infect Immun. 1989 Jan;57(1):158–163. doi: 10.1128/iai.57.1.158-163.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miyamoto Y., Obara Y., Nikkawa T., Yamai S., Kato T., Yamada Y., Ohashi M. Simplified purification and biophysicochemical characteristics of Kanagawa phenomenon-associated hemolysin of Vibrio parahaemolyticus. Infect Immun. 1980 May;28(2):567–576. doi: 10.1128/iai.28.2.567-576.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyoshi S., Shinoda S. Role of the protease in the permeability enhancement by Vibrio vulnificus. Microbiol Immunol. 1988;32(10):1025–1032. doi: 10.1111/j.1348-0421.1988.tb01467.x. [DOI] [PubMed] [Google Scholar]
  22. Nayar R., Schmid S. L., Hope M. J., Cullis P. R. Structural preferences of phosphatidylinositol and phosphatidylinositol-phosphatidylethanolamine model membranes. Influence of Ca2+ and Mg2+. Biochim Biophys Acta. 1982 May 21;688(1):169–176. doi: 10.1016/0005-2736(82)90592-2. [DOI] [PubMed] [Google Scholar]
  23. Nishibuchi M., Fasano A., Russell R. G., Kaper J. B. Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun. 1992 Sep;60(9):3539–3545. doi: 10.1128/iai.60.9.3539-3545.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nishibuchi M., Seidler R. J. Medium-dependent production of extracellular enterotoxins by non-O-1 Vibrio cholerae, Vibrio mimicus, and Vibrio fluvialis. Appl Environ Microbiol. 1983 Jan;45(1):228–231. doi: 10.1128/aem.45.1.228-231.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Park J. W., Jahng T. A., Rho H. W., Park B. H., Kim N. H., Kim H. R. Inhibitory mechanism of Ca2+ on the hemolysis caused by Vibrio vulnificus cytolysin. Biochim Biophys Acta. 1994 Aug 24;1194(1):166–170. doi: 10.1016/0005-2736(94)90216-x. [DOI] [PubMed] [Google Scholar]
  26. Raimondi F., Kao J. P., Kaper J. B., Guandalini S., Fasano A. Calcium-dependent intestinal chloride secretion by Vibrio parahaemolyticus thermostable direct hemolysin in a rabbit model. Gastroenterology. 1995 Aug;109(2):381–386. doi: 10.1016/0016-5085(95)90324-0. [DOI] [PubMed] [Google Scholar]
  27. Sakurai J., Ochi S., Tanaka H. Evidence for coupling of Clostridium perfringens alpha-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect Immun. 1993 Sep;61(9):3711–3718. doi: 10.1128/iai.61.9.3711-3718.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shinoda S., Ishida K., Oh E. G., Sasahara K., Miyoshi S., Chowdhury M. A., Yasuda T. Studies on hemolytic action of a hemolysin produced by Vibrio mimicus. Microbiol Immunol. 1993;37(5):405–409. doi: 10.1111/j.1348-0421.1993.tb03229.x. [DOI] [PubMed] [Google Scholar]
  29. Shinoda S., Miyoshi S., Yamanaka H., Miyoshi-Nakahara N. Some properties of Vibrio vulnificus hemolysin. Microbiol Immunol. 1985;29(7):583–590. doi: 10.1111/j.1348-0421.1985.tb00862.x. [DOI] [PubMed] [Google Scholar]
  30. Smyth C. J., Möllby R., Wadström T. Phenomenon of hot-cold hemolysis: chelator-induced lysis of sphingomyelinase-treated erythrocytes. Infect Immun. 1975 Nov;12(5):1104–1111. doi: 10.1128/iai.12.5.1104-1111.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spira W. M., Fedorka-Cray P. J. Purification of enterotoxins from Vibrio mimicus that appear to be identical to cholera toxin. Infect Immun. 1984 Sep;45(3):679–684. doi: 10.1128/iai.45.3.679-684.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tomita T., Watanabe M., Yasuda T. Influence of membrane fluidity on the assembly of Staphylococcus aureus alpha-toxin, a channel-forming protein, in liposome membrane. J Biol Chem. 1992 Jul 5;267(19):13391–13397. [PubMed] [Google Scholar]
  33. Tomoda A., Kodaira K., Taketo A., Tanimoto K., Yoneyama Y. Isolation of human erythrocyte membranes in glucose solution. Anal Biochem. 1984 Aug 1;140(2):386–390. doi: 10.1016/0003-2697(84)90182-9. [DOI] [PubMed] [Google Scholar]
  34. Walev I., Palmer M., Valeva A., Weller U., Bhakdi S. Binding, oligomerization, and pore formation by streptolysin O in erythrocytes and fibroblast membranes: detection of nonlytic polymers. Infect Immun. 1995 Apr;63(4):1188–1194. doi: 10.1128/iai.63.4.1188-1194.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wallis C. J., Babitch J. A., Wenegieme E. F. Divalent cation binding to erythrocyte spectrin. Biochemistry. 1993 May 18;32(19):5045–5050. doi: 10.1021/bi00070a011. [DOI] [PubMed] [Google Scholar]
  36. Yamamoto K., Al-Omani M., Honda T., Takeda Y., Miwatani T. Non-O1 Vibrio cholerae hemolysin: purification, partial characterization, and immunological relatedness to El Tor hemolysin. Infect Immun. 1984 Jul;45(1):192–196. doi: 10.1128/iai.45.1.192-196.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yoh M., Honda T., Miwatani T. Comparison of hemolysins of Vibrio cholerae non-O1 and Vibrio hollisae with thermostable direct hemolysin of Vibrio parahaemolyticus. Can J Microbiol. 1988 Dec;34(12):1321–1324. doi: 10.1139/m88-231. [DOI] [PubMed] [Google Scholar]
  38. Yoh M., Morinaga N., Noda M., Honda T. The binding of Vibrio parahaemolyticus 125I-labeled thermostable directhemolysin to erythrocytes. Toxicon. 1995 May;33(5):651–657. doi: 10.1016/0041-0101(95)00002-4. [DOI] [PubMed] [Google Scholar]
  39. Yoshida H., Honda T., Miwatani T. Purification and characterization of a hemolysin of Vibrio mimicus that relates to the thermostable direct hemolysin of Vibrio parahaemolyticus. FEMS Microbiol Lett. 1991 Dec 1;68(3):249–253. doi: 10.1016/0378-1097(91)90364-g. [DOI] [PubMed] [Google Scholar]
  40. Zitzer A., Walev I., Palmer M., Bhakdi S. Characterization of Vibrio cholerae El Tor cytolysin as an oligomerizing pore-forming toxin. Med Microbiol Immunol. 1995 May;184(1):37–44. doi: 10.1007/BF00216788. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES