Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 May;65(5):1849–1855. doi: 10.1128/iai.65.5.1849-1855.1997

Activation, binding, and processing of complement component 3 (C3) by Blastomyces dermatitidis.

M X Zhang 1, B Klein 1
PMCID: PMC175230  PMID: 9125571

Abstract

Complement plays a key role in phagocyte recognition and killing of Blastomyces dermatitidis, but little is known about how complement components interact with the yeast. We report the characteristics of activation, binding, and processing of C3 by B. dermatitidis. In pooled normal human serum (NHS), deposition of C3 on the yeast was detectable within 2 min, whereas in NHS containing MgEGTA, deposition was delayed by 6 min, indicating that the yeast activates C3 by both classical and alternative pathways. When both pathways were operative, maximal binding of 4.5 x 10(6) C3 molecules/cell was achieved in less than 30 min. In the absence of the classical pathway, yeast cells bound 80% of the maximum C3, indicating that the yeast intrinsically activates the alternative pathway. Delayed deposition of C3 in NHS-MgEGTA was similar to that in NHS preabsorbed by the yeast or by immobilized protein A/G to remove serum immunoglobulin. Purified immunoglobulin restored C3 binding to NHS preabsorbed by the yeast, suggesting that antibody in nonimmune serum initiates the classical pathway. beta-Glucan absorption of NHS abolished the classical pathway, suggesting that cell wall beta-glucan is a target of initiating antibodies. Hydroxylamine treatment of NHS-opsonized yeast cells showed that 76% of C3 was bound to yeast cells by ester linkage, supporting a role for hydroxyl groups on cell wall polysaccharides. Hydroxylamine-cleaved fragments were chiefly C3b and iC3b; 70% of hydroxylamine-sensitive C3b was converted to iC3b within 1 min of opsonization, and the ratio was stable over 1 h. Our data predict that C3b and iC3b on opsonized yeast cells direct binding to CR1 and CR3 receptors on human phagocytes, which, in turn, may influence the fate of this host-pathogen interaction.

Full Text

The Full Text of this article is available as a PDF (441.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon J. S., Farmer V. C., Jones D., Taylor I. F. The glucan components of the cell wall of baker's yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem J. 1969 Sep;114(3):557–567. doi: 10.1042/bj1140557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DI CARLO F. J., FIORE J. V. On the composition of zymosan. Science. 1958 Apr 4;127(3301):756–757. doi: 10.1126/science.127.3301.756-a. [DOI] [PubMed] [Google Scholar]
  3. Drutz D. J., Frey C. L. Intracellular and extracellular defenses of human phagocytes against Blastomyces dermatitidis conidia and yeasts. J Lab Clin Med. 1985 Jun;105(6):737–750. [PubMed] [Google Scholar]
  4. Fine D. P., Marney S. R., Jr, Colley D. G., Sergent J. S., Des Prez R. M. C3 shunt activation in human serum chelated with EGTA. J Immunol. 1972 Oct;109(4):807–809. [PubMed] [Google Scholar]
  5. Hogan L. H., Klein B. S. Altered expression of surface alpha-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect Immun. 1994 Aug;62(8):3543–3546. doi: 10.1128/iai.62.8.3543-3546.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ikeda K., Sannoh T., Kawasaki N., Kawasaki T., Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987 Jun 5;262(16):7451–7454. [PubMed] [Google Scholar]
  7. Kanetsuna F., Carbonell L. M. Cell wall composition of the yeastlike and mycelial forms of Blastomyces dermatitidis. J Bacteriol. 1971 Jun;106(3):946–948. doi: 10.1128/jb.106.3.946-948.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keller R. G., Pfrommer G. S., Kozel T. R. Occurrences, specificities, and functions of ubiquitous antibodies in human serum that are reactive with the Cryptococcus neoformans cell wall. Infect Immun. 1994 Jan;62(1):215–220. doi: 10.1128/iai.62.1.215-220.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klein B. S., Jones J. M. Isolation, purification, and radiolabeling of a novel 120-kD surface protein on Blastomyces dermatitidis yeasts to detect antibody in infected patients. J Clin Invest. 1990 Jan;85(1):152–161. doi: 10.1172/JCI114406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klimpel K. R., Goldman W. E. Cell walls from avirulent variants of Histoplasma capsulatum lack alpha-(1,3)-glucan. Infect Immun. 1988 Nov;56(11):2997–3000. doi: 10.1128/iai.56.11.2997-3000.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kohler P. F., Müller-Eberhard H. J. Immunochemical quantitation of the third, fourth and fifth components of human complement: concentrations in the serum of healthy adults. J Immunol. 1967 Dec;99(6):1211–1216. [PubMed] [Google Scholar]
  12. Kozel T. R. Activation of the complement system by pathogenic fungi. Clin Microbiol Rev. 1996 Jan;9(1):34–46. doi: 10.1128/cmr.9.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozel T. R., Brown R. R., Pfrommer G. S. Activation and binding of C3 by Candida albicans. Infect Immun. 1987 Aug;55(8):1890–1894. doi: 10.1128/iai.55.8.1890-1894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kozel T. R., Weinhold L. C., Lupan D. M. Distinct characteristics of initiation of the classical and alternative complement pathways by Candida albicans. Infect Immun. 1996 Aug;64(8):3360–3368. doi: 10.1128/iai.64.8.3360-3368.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozel T. R., Wilson M. A., Murphy J. W. Early events in initiation of alternative complement pathway activation by the capsule of Cryptococcus neoformans. Infect Immun. 1991 Sep;59(9):3101–3110. doi: 10.1128/iai.59.9.3101-3110.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kozel T. R., Wilson M. A., Pfrommer G. S., Schlageter A. M. Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun. 1989 Jul;57(7):1922–1927. doi: 10.1128/iai.57.7.1922-1927.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Law S. K., Levine R. P. Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2701–2705. doi: 10.1073/pnas.74.7.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Law S. K., Lichtenberg N. A., Levine R. P. Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J Immunol. 1979 Sep;123(3):1388–1394. [PubMed] [Google Scholar]
  19. Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
  20. Matsushita M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992 Dec 1;176(6):1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newman S. L., Chaturvedi S., Klein B. S. The WI-1 antigen of Blastomyces dermatitidis yeasts mediates binding to human macrophage CD11b/CD18 (CR3) and CD14. J Immunol. 1995 Jan 15;154(2):753–761. [PubMed] [Google Scholar]
  22. Newman S. L., Mikus L. K. Deposition of C3b and iC3b onto particulate activators of the human complement system. Quantitation with monoclonal antibodies to human C3. J Exp Med. 1985 Jun 1;161(6):1414–1431. doi: 10.1084/jem.161.6.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nollstadt K. H., Powles M. A., Fujioka H., Aikawa M., Schmatz D. M. Use of beta-1,3-glucan-specific antibody to study the cyst wall of Pneumocystis carinii and effects of pneumocandin B0 analog L-733,560. Antimicrob Agents Chemother. 1994 Oct;38(10):2258–2265. doi: 10.1128/aac.38.10.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pfrommer G. S., Dickens S. M., Wilson M. A., Young B. J., Kozel T. R. Accelerated decay of C3b to iC3b when C3b is bound to the Cryptococcus neoformans capsule. Infect Immun. 1993 Oct;61(10):4360–4366. doi: 10.1128/iai.61.10.4360-4366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilson M. A., Kozel T. R. Contribution of antibody in normal human serum to early deposition of C3 onto encapsulated and nonencapsulated Cryptococcus neoformans. Infect Immun. 1992 Mar;60(3):754–761. doi: 10.1128/iai.60.3.754-761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Worsham P. L., Goldman W. E. Quantitative plating of Histoplasma capsulatum without addition of conditioned medium or siderophores. J Med Vet Mycol. 1988 Jun;26(3):137–143. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES