Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 May;65(5):1908–1915. doi: 10.1128/iai.65.5.1908-1915.1997

Characterization of the physiological requirements for the bactericidal effects of a monoclonal antibody to OspB of Borrelia burgdorferi by confocal microscopy.

R Escudero 1, M L Halluska 1, P B Backenson 1, J L Coleman 1, J L Benach 1
PMCID: PMC175240  PMID: 9125579

Abstract

A confocal microscopy study was undertaken to characterize the bactericidal effects of the Fab fragments of CB2, an immunoglobulin G1kappa murine monoclonal antibody, to an epitope in the carboxy region of the outer surface protein B (OspB) of Borrelia burgdorferi. Simultaneous direct labeling of both fixed and live spirochetes with fluorochrome-labeled Fab-CB2 and 11G1, and an immunoglobulin Mkappa monoclonal antibody to OspA, showed that OspA and OspB seem to colocalize in dead spirochetes but do not appear to be physically associated when the organisms are alive. A polar bleb composed of a Fab-CB2-OspB complex, followed by incorporation of 11G1-OspA, precedes the formation of a spheroplast. The spheroplasts contain both OspA and OspB and are a terminal stage in the bactericidal process induced by Fab-CB2. Outer membrane destabilization by Fab-CB2, but not cell wall or cytoplasmic membrane alterations, was demonstrated experimentally by the sequential treatment of spirochetes with Fab-CB2 and monoclonal antibodies to flagellin and DnaK. The action of Fab-CB2 is epitope specific, as another monoclonal antibody to an epitope in the amino terminus of OspB was not bactericidal. The bactericidal effect of Fab-CB2 is not dependent on the induction of spirochetal proteases but is dependent on the presence of Ca2+ and Mg2+. Supplementation of Ca2(+)- and Mg2(+)-free medium with these cations restored the bactericidal effects of Fab-CB2. The mechanism by which a Fab fragment of an antibody destroys a bacterium directly may represent a novel form of antibody-organism interaction.

Full Text

The Full Text of this article is available as a PDF (506.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alborn W. E., Jr, Allen N. E., Preston D. A. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Nov;35(11):2282–2287. doi: 10.1128/aac.35.11.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anda P., Backenson P. B., Coleman J. L., Benach J. L. Epitopes shared by unrelated antigens of Borrelia burgdorferi. Infect Immun. 1994 Mar;62(3):1070–1078. doi: 10.1128/iai.62.3.1070-1078.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Backenson P. B., Coleman J. L., Benach J. L. Borrelia burgdorferi shows specificity of binding to glycosphingolipids. Infect Immun. 1995 Aug;63(8):2811–2817. doi: 10.1128/iai.63.8.2811-2817.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbour A. G., Tessier S. L., Todd W. J. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun. 1983 Aug;41(2):795–804. doi: 10.1128/iai.41.2.795-804.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barbour A. G., Todd W. J., Stoenner H. G. Action of penicillin on Borrelia hermsii. Antimicrob Agents Chemother. 1982 May;21(5):823–829. doi: 10.1128/aac.21.5.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barthold S. W. Infectivity of Borrelia burgdorferi relative to route of inoculation and genotype in laboratory mice. J Infect Dis. 1991 Feb;163(2):419–420. doi: 10.1093/infdis/163.2.419. [DOI] [PubMed] [Google Scholar]
  7. Benach J. L., Coleman J. L., Golightly M. G. A murine IgM monoclonal antibody binds an antigenic determinant in outer surface protein A, an immunodominant basic protein of the Lyme disease spirochete. J Immunol. 1988 Jan 1;140(1):265–272. [PubMed] [Google Scholar]
  8. Bergström S., Bundoc V. G., Barbour A. G. Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi. Mol Microbiol. 1989 Apr;3(4):479–486. doi: 10.1111/j.1365-2958.1989.tb00194.x. [DOI] [PubMed] [Google Scholar]
  9. Brandt M. E., Riley B. S., Radolf J. D., Norgard M. V. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect Immun. 1990 Apr;58(4):983–991. doi: 10.1128/iai.58.4.983-991.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brusca J. S., McDowall A. W., Norgard M. V., Radolf J. D. Localization of outer surface proteins A and B in both the outer membrane and intracellular compartments of Borrelia burgdorferi. J Bacteriol. 1991 Dec;173(24):8004–8008. doi: 10.1128/jb.173.24.8004-8008.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Burkot T. R., Piesman J., Wirtz R. A. Quantitation of the Borrelia burgdorferi outer surface protein A in Ixodes scapularis: fluctuations during the tick life cycle, doubling times, and loss while feeding. J Infect Dis. 1994 Oct;170(4):883–889. doi: 10.1093/infdis/170.4.883. [DOI] [PubMed] [Google Scholar]
  12. Coleman J. L., Benach J. L. Characterization of antigenic determinants of Borrelia burgdorferi shared by other bacteria. J Infect Dis. 1992 Apr;165(4):658–666. doi: 10.1093/infdis/165.4.658. [DOI] [PubMed] [Google Scholar]
  13. Coleman J. L., Benach J. L. Identification and characterization of an endoflagellar antigen of Borrelia burgdorferi. J Clin Invest. 1989 Jul;84(1):322–330. doi: 10.1172/JCI114157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Coleman J. L., Benach J. L. Isolation of antigenic components from the Lyme disease spirochete: their role in early diagnosis. J Infect Dis. 1987 Apr;155(4):756–765. doi: 10.1093/infdis/155.4.756. [DOI] [PubMed] [Google Scholar]
  15. Coleman J. L., Rogers R. C., Benach J. L. Selection of an escape variant of Borrelia burgdorferi by use of bactericidal monoclonal antibodies to OspB. Infect Immun. 1992 Aug;60(8):3098–3104. doi: 10.1128/iai.60.8.3098-3104.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Coleman J. L., Rogers R. C., Rosa P. A., Benach J. L. Variations in the ospB gene of Borrelia burgdorferi result in differences in monoclonal antibody reactivity and in production of escape variants. Infect Immun. 1994 Jan;62(1):303–307. doi: 10.1128/iai.62.1.303-307.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cox D. L., Akins D. R., Bourell K. W., Lahdenne P., Norgard M. V., Radolf J. D. Limited surface exposure of Borrelia burgdorferi outer surface lipoproteins. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7973–7978. doi: 10.1073/pnas.93.15.7973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dever L. L., Jorgensen J. H., Barbour A. G. In vitro activity of vancomycin against the spirochete Borrelia burgdorferi. Antimicrob Agents Chemother. 1993 May;37(5):1115–1121. doi: 10.1128/aac.37.5.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fikrig E., Barthold S. W., Kantor F. S., Flavell R. A. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science. 1990 Oct 26;250(4980):553–556. doi: 10.1126/science.2237407. [DOI] [PubMed] [Google Scholar]
  20. Fikrig E., Telford S. R., 3rd, Barthold S. W., Kantor F. S., Spielman A., Flavell R. A. Elimination of Borrelia burgdorferi from vector ticks feeding on OspA-immunized mice. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5418–5421. doi: 10.1073/pnas.89.12.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Garcia-Monco J. C., Fernandez-Villar B., Benach J. L. Adherence of the Lyme disease spirochete to glial cells and cells of glial origin. J Infect Dis. 1989 Sep;160(3):497–506. doi: 10.1093/infdis/160.3.497. [DOI] [PubMed] [Google Scholar]
  22. Goding J. W. Conjugation of antibodies with fluorochromes: modifications to the standard methods. J Immunol Methods. 1976;13(3-4):215–226. doi: 10.1016/0022-1759(76)90068-5. [DOI] [PubMed] [Google Scholar]
  23. Goldstein S. F., Buttle K. F., Charon N. W. Structural analysis of the Leptospiraceae and Borrelia burgdorferi by high-voltage electron microscopy. J Bacteriol. 1996 Nov;178(22):6539–6545. doi: 10.1128/jb.178.22.6539-6545.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goldstein S. F., Charon N. W., Kreiling J. A. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3433–3437. doi: 10.1073/pnas.91.8.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Johnson R. C., Kodner C., Russell M. Passive immunization of hamsters against experimental infection with the Lyme disease spirochete. Infect Immun. 1986 Sep;53(3):713–714. doi: 10.1128/iai.53.3.713-714.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kalish R. A., Leong J. M., Steere A. C. Association of treatment-resistant chronic Lyme arthritis with HLA-DR4 and antibody reactivity to OspA and OspB of Borrelia burgdorferi. Infect Immun. 1993 Jul;61(7):2774–2779. doi: 10.1128/iai.61.7.2774-2779.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ma J., Gingrich-Baker C., Franchi P. M., Bulger P., Coughlin R. T. Molecular analysis of neutralizing epitopes on outer surface proteins A and B of Borrelia burgdorferi. Infect Immun. 1995 Jun;63(6):2221–2227. doi: 10.1128/iai.63.6.2221-2227.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Radolf J. D., Bourell K. W., Akins D. R., Brusca J. S., Norgard M. V. Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol. 1994 Jan;176(1):21–31. doi: 10.1128/jb.176.1.21-31.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Radolf J. D., Goldberg M. S., Bourell K., Baker S. I., Jones J. D., Norgard M. V. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun. 1995 Jun;63(6):2154–2163. doi: 10.1128/iai.63.6.2154-2163.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sadziene A., Barbour A. G., Rosa P. A., Thomas D. D. An OspB mutant of Borrelia burgdorferi has reduced invasiveness in vitro and reduced infectivity in vivo. Infect Immun. 1993 Sep;61(9):3590–3596. doi: 10.1128/iai.61.9.3590-3596.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sadziene A., Jonsson M., Bergström S., Bright R. K., Kennedy R. C., Barbour A. G. A bactericidal antibody to Borrelia burgdorferi is directed against a variable region of the OspB protein. Infect Immun. 1994 May;62(5):2037–2045. doi: 10.1128/iai.62.5.2037-2045.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sadziene A., Thompson P. A., Barbour A. G. In vitro inhibition of Borrelia burgdorferi growth by antibodies. J Infect Dis. 1993 Jan;167(1):165–172. doi: 10.1093/infdis/167.1.165. [DOI] [PubMed] [Google Scholar]
  33. Schaible U. E., Kramer M. D., Eichmann K., Modolell M., Museteanu C., Simon M. M. Monoclonal antibodies specific for the outer surface protein A (OspA) of Borrelia burgdorferi prevent Lyme borreliosis in severe combined immunodeficiency (scid) mice. Proc Natl Acad Sci U S A. 1990 May;87(10):3768–3772. doi: 10.1073/pnas.87.10.3768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schaller M., Neubert U. Ultrastructure of Borrelia burgdorferi after exposure to benzylpenicillin. Infection. 1994 Nov-Dec;22(6):401–406. doi: 10.1007/BF01715497. [DOI] [PubMed] [Google Scholar]
  35. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2909–2913. doi: 10.1073/pnas.92.7.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Scriba M., Ebrahim J. S., Schlott T., Eiffert H. The 39-kilodalton protein of Borrelia burgdorferi: a target for bactericidal human monoclonal antibodies. Infect Immun. 1993 Oct;61(10):4523–4526. doi: 10.1128/iai.61.10.4523-4526.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simon M. M., Schaible U. E., Kramer M. D., Eckerskorn C., Museteanu C., Müller-Hermelink H. K., Wallich R. Recombinant outer surface protein a from Borrelia burgdorferi induces antibodies protective against spirochetal infection in mice. J Infect Dis. 1991 Jul;164(1):123–132. doi: 10.1093/infdis/164.1.123. [DOI] [PubMed] [Google Scholar]
  38. Sonntag I., Schwarz H., Hirota Y., Henning U. Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol. 1978 Oct;136(1):280–285. doi: 10.1128/jb.136.1.280-285.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Suzuki H., Nishimura Y., Yasuda S., Nishimura A., Yamada M., Hirota Y. Murein-lipoprotein of Escherichia coli: a protein involved in the stabilization of bacterial cell envelope. Mol Gen Genet. 1978 Nov 16;167(1):1–9. doi: 10.1007/BF00270315. [DOI] [PubMed] [Google Scholar]
  40. Sădziene A., Rosa P. A., Thompson P. A., Hogan D. M., Barbour A. G. Antibody-resistant mutants of Borrelia burgdorferi: in vitro selection and characterization. J Exp Med. 1992 Sep 1;176(3):799–809. doi: 10.1084/jem.176.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Umemoto T., Namikawa I. Electron microscopy of the spherical body of oral spirochetes in vitro. Further studies. Microbiol Immunol. 1980;24(4):321–334. doi: 10.1111/j.1348-0421.1980.tb02835.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES