Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1997 Sep;56(9):542–549. doi: 10.1136/ard.56.9.542

Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific

A Freemont 1, V Hampson 1, R Tilman 1, P Goupille 1, Y Taiwo 1, J Hoyland 1
PMCID: PMC1752435  PMID: 9370879

Abstract

OBJECTIVES—Matrix metalloproteinases (MMPs) are thought to be major mediators of cartilage destruction. Osteoarthritis (OA) is characterised by cartilage degradation. This study explores gene expression of three MMPs in articular chondrocytes during the histological development of the cartilage lesion of OA.
METHODS—Biopsy specimens of human normal and OA cartilage, classified into four grades on the basis of histology, were probed for MMPs 1, 3, and 9 using 35S-labelled cDNA probes. The signal was measured at four different depths (zones) using an automated image analyser and compared with signal from sections probed with λDNA. Rheumatoid synovium was used as a positive control for MMP gene expression.
RESULTS—Rheumatoid tissue contained mRNA for all three MMPs. Expression in chondrocytes varied with the depth of the chondrocyte in the cartilage and the histomorphological extent of the OA changes. There was no detectable mRNA signal for these three MMPs in normal cartilage. In general, in OA, MMP-1 gene expression was greatest in the superficial cartilage in established disease. By contrast mRNAs for MMP-3 and 9 were expressed deeper in the cartilage, MMP-9 early in disease and MMP-3 with a biphasic pattern in early and late stage disease, most pronounced in the latter. This was a consequence of differential expression in single cells and chondrocyte clusters in late disease.
CONCLUSION—The data indicate that expression of genes for MMPs 1, 3, and 9 is differentially regulated in human articular chondrocytes and, in individual cells, is related to the depth of the chondrocyte below the cartilage surface and the nature and extent of the cartilage lesion.



Full Text

The Full Text of this article is available as a PDF (220.3 KB).

Figure 1  .

Figure 1  

Each diagram shows the distribution and amount of a metalloproteinase mRNA signal in articular cartilage in the various zones and grades of cartilage damage. The (S−N)/N ratio is represented by the density of shading of the box and by the numbers within the box. The numbers represent the mean (SD) ratio for all the sections of all the biopsy specimens in that grade. The shading has been arbitrarily divided into five as shown in the key. It is intended that the figure should aid visual comparison between the different MMPs in terms of signal and distribution.

Figure 2  .

Figure 2  

Examples of ISH reaction in articular cartilage. (A) Low power light photomicrograph of zones 2, 3, and 4 grade 3 reacted for MMP-1. The subchondral bone is in the bottom right and the articular surface bearing a small fissure is just visible in the top left. Zones 2 and 4 contain very little reaction product whereas reaction product is visible within zone 3. ISH × 50. (B) Light field photomicrograph of zones 2 and 3 grade 3 reacted for MMP-3. The majority of lacunae containing single cells have little or no overlying reaction product (arrow heads). Almost all the lacunae containing multiple cells (chondrocyte clusters), such as that arrowed, have high signal levels. ISH × 150. (C) Light field photomicrograph of zones 1 and 2 of grade 1 articular changes reacted for MMP-9. There are no grains over the cells in zone 1 and a high grain count over cells in zone 2. ISH × 200. (D) RNase treated section reacted for MMP-1. ISH × 150. 

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew J. G., Hoyland J. A., Freemont A. J., Marsh D. R. Platelet-derived growth factor expression in normally healing human fractures. Bone. 1995 Apr;16(4):455–460. doi: 10.1016/8756-3282(95)90191-4. [DOI] [PubMed] [Google Scholar]
  2. Andrew J. G., Hoyland J., Andrew S. M., Freemont A. J., Marsh D. Demonstration of TGF-beta 1 mRNA by in situ hybridization in normal human fracture healing. Calcif Tissue Int. 1993 Feb;52(2):74–78. doi: 10.1007/BF00308311. [DOI] [PubMed] [Google Scholar]
  3. Blair H. C., Dean D. D., Howell D. S., Teitelbaum S. L., Jeffrey J. J. Hypertrophic chondrocytes produce immunoreactive collagenase in vivo. Connect Tissue Res. 1989;23(1):65–73. doi: 10.3109/03008208909103904. [DOI] [PubMed] [Google Scholar]
  4. Case J. P., Lafyatis R., Remmers E. F., Kumkumian G. K., Wilder R. L. Transin/stromelysin expression in rheumatoid synovium. A transformation-associated metalloproteinase secreted by phenotypically invasive synoviocytes. Am J Pathol. 1989 Dec;135(6):1055–1064. [PMC free article] [PubMed] [Google Scholar]
  5. Cawston T. E., Billington C. Metalloproteinases in the rheumatic diseases. J Pathol. 1996 Oct;180(2):115–117. doi: 10.1002/(SICI)1096-9896(199610)180:2<115::AID-PATH674>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  6. Chubinskaya S., Huch K., Mikecz K., Cs-Szabo G., Hasty K. A., Kuettner K. E., Cole A. A. Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Lab Invest. 1996 Jan;74(1):232–240. [PubMed] [Google Scholar]
  7. Cole A. A., Chubinskaya S., Schumacher B., Huch K., Szabo G., Yao J., Mikecz K., Hasty K. A., Kuettner K. E. Chondrocyte matrix metalloproteinase-8. Human articular chondrocytes express neutrophil collagenase. J Biol Chem. 1996 May 3;271(18):11023–11026. doi: 10.1074/jbc.271.18.11023. [DOI] [PubMed] [Google Scholar]
  8. Cole A. A., Kuettner K. E. MMP-8 (neutrophil collagenase) mRNA and aggrecanase cleavage products are present in normal and osteoarthritic human articular cartilage. Acta Orthop Scand Suppl. 1995 Oct;266:98–102. [PubMed] [Google Scholar]
  9. Crossley M. J., Connon A. M., Hunneyball I. M. The possible role of synovial factors in cartilage destruction. Agents Actions Suppl. 1986;18:39–42. doi: 10.1007/978-3-0348-7684-1_5. [DOI] [PubMed] [Google Scholar]
  10. Dean D. D., Azzo W., Martel-Pelletier J., Pelletier J. P., Woessner J. F., Jr Levels of metalloproteases and tissue inhibitor of metalloproteases in human osteoarthritic cartilage. J Rheumatol. 1987 May;14(Spec No):43–44. [PubMed] [Google Scholar]
  11. Dean D. D., Martel-Pelletier J., Pelletier J. P., Howell D. S., Woessner J. F., Jr Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989 Aug;84(2):678–685. doi: 10.1172/JCI114215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hasty K. A., Reife R. A., Kang A. H., Stuart J. M. The role of stromelysin in the cartilage destruction that accompanies inflammatory arthritis. Arthritis Rheum. 1990 Mar;33(3):388–397. doi: 10.1002/art.1780330312. [DOI] [PubMed] [Google Scholar]
  13. Hauselmann H. J., Flechtenmacher J., Michal L., Thonar E. J., Shinmei M., Kuettner K. E., Aydelotte M. B. The superficial layer of human articular cartilage is more susceptible to interleukin-1-induced damage than the deeper layers. Arthritis Rheum. 1996 Mar;39(3):478–488. doi: 10.1002/art.1780390316. [DOI] [PubMed] [Google Scholar]
  14. Hollander A. P., Pidoux I., Reiner A., Rorabeck C., Bourne R., Poole A. R. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest. 1995 Dec;96(6):2859–2869. doi: 10.1172/JCI118357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoyland J. A., Freemont A. J. Investigation of a quantitative post-hybridization signal amplification system for mRNA-oligodeoxyribonucleotide in situ hybridization. J Pathol. 1991 May;164(1):51–58. doi: 10.1002/path.1711640110. [DOI] [PubMed] [Google Scholar]
  16. Hoyland J. A., Freemont A. J., Sharpe P. T. Interleukin-6, IL-6 receptor, and IL-6 nuclear factor gene expression in Paget's disease. J Bone Miner Res. 1994 Jan;9(1):75–80. doi: 10.1002/jbmr.5650090111. [DOI] [PubMed] [Google Scholar]
  17. Hoyland J. A., Mee A. P., Baird P., Braidman I. P., Mawer E. B., Freemont A. J. Demonstration of estrogen receptor mRNA in bone using in situ reverse-transcriptase polymerase chain reaction. Bone. 1997 Feb;20(2):87–92. doi: 10.1016/s8756-3282(96)00346-8. [DOI] [PubMed] [Google Scholar]
  18. Ito A., Nose T., Takahashi S., Mori Y. Cyclooxygenase inhibitors augment the production of pro-matrix metalloproteinase 9 (progelatinase B) in rabbit articular chondrocytes. FEBS Lett. 1995 Feb 20;360(1):75–79. doi: 10.1016/0014-5793(95)00085-n. [DOI] [PubMed] [Google Scholar]
  19. Lefebvre V., Peeters-Joris C., Vaes G. Production of gelatin-degrading matrix metalloproteinases ('type IV collagenases') and inhibitors by articular chondrocytes during their dedifferentiation by serial subcultures and under stimulation by interleukin-1 and tumor necrosis factor alpha. Biochim Biophys Acta. 1991 Aug 13;1094(1):8–18. doi: 10.1016/0167-4889(91)90020-x. [DOI] [PubMed] [Google Scholar]
  20. Manicourt D. H., Pita J. C., McDevitt C. A., Howell D. S. Superficial and deeper layers of dog normal articular cartilage. Role of hyaluronate and link protein in determining the sedimentation coefficients distribution of the nondissociatively extracted proteoglycans. J Biol Chem. 1988 Sep 15;263(26):13121–13129. [PubMed] [Google Scholar]
  21. Manicourt D. H., Pita J. C., Thonar E. J., Howell D. S. Proteoglycans nondissociatively extracted from different zones of canine normal articular cartilage: variations in the sedimentation profile of aggregates with degree of physiological stress. Connect Tissue Res. 1991;26(4):231–246. doi: 10.3109/03008209109152441. [DOI] [PubMed] [Google Scholar]
  22. Mankin H. J., Dorfman H., Lippiello L., Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971 Apr;53(3):523–537. [PubMed] [Google Scholar]
  23. Marles P. J., Hoyland J. A., Parkinson R., Freemont A. J. Demonstration of variation in chondrocyte activity in different zones of articular cartilage: an assessment of the value of in-situ hybridization. Int J Exp Pathol. 1991 Apr;72(2):171–182. [PMC free article] [PubMed] [Google Scholar]
  24. Martel-Pelletier J., McCollum R., Fujimoto N., Obata K., Cloutier J. M., Pelletier J. P. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab Invest. 1994 Jun;70(6):807–815. [PubMed] [Google Scholar]
  25. Martel-Pelletier J., Pelletier J. P. Neutral metalloproteases and age related changes in human articular cartilage. Ann Rheum Dis. 1987 May;46(5):363–369. doi: 10.1136/ard.46.5.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martel-Pelletier J., Pelletier J. P. Neutral proteases in human osteoarthritic synovium: quantification and characterization. J Rheumatol. 1987 May;14(Spec No):38–40. [PubMed] [Google Scholar]
  27. Martel-Pelletier J., Pelletier J. P. Wanted--the collagenase responsible for the destruction of the collagen network in human cartilage! Br J Rheumatol. 1996 Sep;35(9):818–820. doi: 10.1093/rheumatology/35.9.818. [DOI] [PubMed] [Google Scholar]
  28. Martel-Pelletier J., Zafarullah M., Kodama S., Pelletier J. P. In vitro effects of interleukin 1 on the synthesis of metalloproteases, TIMP, plasminogen activators and inhibitors in human articular cartilage. J Rheumatol Suppl. 1991 Feb;27:80–84. [PubMed] [Google Scholar]
  29. McCachren S. S. Expression of metalloproteinases and metalloproteinase inhibitor in human arthritic synovium. Arthritis Rheum. 1991 Sep;34(9):1085–1093. doi: 10.1002/art.1780340904. [DOI] [PubMed] [Google Scholar]
  30. Mehraban F., Kuo S. Y., Riera H., Chang C., Moskowitz R. W. Prostromelysin and procollagenase genes are differentially up-regulated in chondrocytes from the knees of rabbits with experimental osteoarthritis. Arthritis Rheum. 1994 Aug;37(8):1189–1197. doi: 10.1002/art.1780370813. [DOI] [PubMed] [Google Scholar]
  31. Mitchell P. G., Magna H. A., Reeves L. M., Lopresti-Morrow L. L., Yocum S. A., Rosner P. J., Geoghegan K. F., Hambor J. E. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996 Feb 1;97(3):761–768. doi: 10.1172/JCI118475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mohtai M., Smith R. L., Schurman D. J., Tsuji Y., Torti F. M., Hutchinson N. I., Stetler-Stevenson W. G., Goldberg G. I. Expression of 92-kD type IV collagenase/gelatinase (gelatinase B) in osteoarthritic cartilage and its induction in normal human articular cartilage by interleukin 1. J Clin Invest. 1993 Jul;92(1):179–185. doi: 10.1172/JCI116547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mort J. S., Dodge G. R., Roughley P. J., Liu J., Finch S. J., DiPasquale G., Poole A. R. Direct evidence for active metalloproteinases mediating matrix degradation in interleukin 1-stimulated human articular cartilage. Matrix. 1993 Mar;13(2):95–102. doi: 10.1016/s0934-8832(11)80068-5. [DOI] [PubMed] [Google Scholar]
  34. Mort J. S., Dodge G. R., Roughley P. J., Liu J., Finch S. J., DiPasquale G., Poole A. R. Direct evidence for active metalloproteinases mediating matrix degradation in interleukin 1-stimulated human articular cartilage. Matrix. 1993 Mar;13(2):95–102. doi: 10.1016/s0934-8832(11)80068-5. [DOI] [PubMed] [Google Scholar]
  35. Nguyen Q., Mort J. S., Roughley P. J. Preferential mRNA expression of prostromelysin relative to procollagenase and in situ localization in human articular cartilage. J Clin Invest. 1992 Apr;89(4):1189–1197. doi: 10.1172/JCI115702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Okada Y., Shinmei M., Tanaka O., Naka K., Kimura A., Nakanishi I., Bayliss M. T., Iwata K., Nagase H. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest. 1992 Jun;66(6):680–690. [PubMed] [Google Scholar]
  37. Pelletier J. P., DiBattista J. A., Raynauld J. P., Wilhelm S., Martel-Pelletier J. The in vivo effects of intraarticular corticosteroid injections on cartilage lesions, stromelysin, interleukin-1, and oncogene protein synthesis in experimental osteoarthritis. Lab Invest. 1995 May;72(5):578–586. [PubMed] [Google Scholar]
  38. Pelletier J. P., Faure M. P., DiBattista J. A., Wilhelm S., Visco D., Martel-Pelletier J. Coordinate synthesis of stromelysin, interleukin-1, and oncogene proteins in experimental osteoarthritis. An immunohistochemical study. Am J Pathol. 1993 Jan;142(1):95–105. [PMC free article] [PubMed] [Google Scholar]
  39. Pelletier J. P., Martel-Pelletier J., Cloutier J. M., Woessner J. F., Jr Proteoglycan-degrading acid metalloprotease activity in human osteoarthritic cartilage, and the effect of intraarticular steroid injections. Arthritis Rheum. 1987 May;30(5):541–548. doi: 10.1002/art.1780300508. [DOI] [PubMed] [Google Scholar]
  40. Pelletier J. P., Martel-Pelletier J., Malemud C. J. Proteoglycans from experimental osteoarthritic cartilage: degradation by neutral metalloproteases. J Rheumatol. 1987 May;14(Spec No):113–115. [PubMed] [Google Scholar]
  41. Pelletier J. P., Mineau F., Faure M. P., Martel-Pelletier J. Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum. 1990 Oct;33(10):1466–1476. doi: 10.1002/art.1780331003. [DOI] [PubMed] [Google Scholar]
  42. Pelletier J. P., Roughley P. J., DiBattista J. A., McCollum R., Martel-Pelletier J. Are cytokines involved in osteoarthritic pathophysiology? Semin Arthritis Rheum. 1991 Jun;20(6 Suppl 2):12–25. doi: 10.1016/0049-0172(91)90024-t. [DOI] [PubMed] [Google Scholar]
  43. Reboul P., Pelletier J. P., Tardif G., Cloutier J. M., Martel-Pelletier J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest. 1996 May 1;97(9):2011–2019. doi: 10.1172/JCI118636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sakiyama H., Inaba N., Toyoguchi T., Okada Y., Matsumoto M., Moriya H., Ohtsu H. Immunolocalization of complement C1s and matrix metalloproteinase 9 (92kDa gelatinase/type IV collagenase) in the primary ossification center of the human femur. Cell Tissue Res. 1994 Aug;277(2):239–245. [PubMed] [Google Scholar]
  45. Sapolsky S., Malemud C., Sheff M. The proteoglycanase from human cartilage and cultured rabbit chondrocytes and its relation to osteoarthritis. J Rheumatol. 1987 May;14(Spec No):33–35. [PubMed] [Google Scholar]
  46. Setton L. A., Mow V. C., Muller F. J., Pita J. C., Howell D. S. Altered structure-function relationships for articular cartilage in human osteoarthritis and an experimental canine model. Agents Actions Suppl. 1993;39:27–48. doi: 10.1007/978-3-0348-7442-7_3. [DOI] [PubMed] [Google Scholar]
  47. Shingu M., Miyauchi S., Nagai Y., Yasutake C., Horie K. The role of IL-4 and IL-6 in IL-1-dependent cartilage matrix degradation. Br J Rheumatol. 1995 Feb;34(2):101–106. doi: 10.1093/rheumatology/34.2.101. [DOI] [PubMed] [Google Scholar]
  48. Shingu M., Nagai Y., Isayama T., Naono T., Nobunaga M., Nagai Y. The effects of cytokines on metalloproteinase inhibitors (TIMP) and collagenase production by human chondrocytes and TIMP production by synovial cells and endothelial cells. Clin Exp Immunol. 1993 Oct;94(1):145–149. doi: 10.1111/j.1365-2249.1993.tb05992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Walsh L., Freemont A. J., Hoyland J. A. The effect of tissue decalcification on mRNA retention within bone for in-situ hybridization studies. Int J Exp Pathol. 1993 Jun;74(3):237–241. [PMC free article] [PubMed] [Google Scholar]
  50. Woessner J. F., Jr, Gunja-Smith Z. Role of metalloproteinases in human osteoarthritis. J Rheumatol Suppl. 1991 Feb;27:99–101. [PubMed] [Google Scholar]
  51. Wolfe G. C., MacNaul K. L., Buechel F. F., McDonnell J., Hoerrner L. A., Lark M. W., Moore V. L., Hutchinson N. I. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum. 1993 Nov;36(11):1540–1547. doi: 10.1002/art.1780361108. [DOI] [PubMed] [Google Scholar]
  52. Yu L. P., Jr, Smith G. N., Jr, Brandt K. D., Capello W. Type XI collagen-degrading activity in human osteoarthritic cartilage. Arthritis Rheum. 1990 Nov;33(11):1626–1633. doi: 10.1002/art.1780331104. [DOI] [PubMed] [Google Scholar]
  53. Zafarullah M., Pelletier J. P., Cloutier J. M., Martel-Pelletier J. Elevated metalloproteinase and tissue inhibitor of metalloproteinase mRNA in human osteoarthritic synovia. J Rheumatol. 1993 Apr;20(4):693–697. [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES