Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1998 Oct;57(10):614–618. doi: 10.1136/ard.57.10.614

Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption

A Sabokbar 1, Y Fujikawa 1, D Murray 1, N Athanasou 1
PMCID: PMC1752488  PMID: 9893573

Abstract

OBJECTIVE—Wear particle induced bone resorption is thought to be one of the mechanisms that contribute to implant loosening. It has previously been shown that macrophages, in response to polymethylmethacrylate (PMMA) particles, differentiate into bone resorbing osteoclasts, and that this process is inhibited by a bisphosphonate, etidronate (EHDP). The aim of this study was to determine whether incorporating EHDP in bone cement could reduce PMMA associated bone resorption.
METHODS—Two concentrations of EHDP were mixed with PMMA monomer before polymerisation. Particles of PMMA (1-10 µm) were generated then added to mouse monocytes cocultured with UMR106 rat osteoblast-like cells and the extent of osteoclast differentiation was determined by assessing the extent of tartrate resistant acid phosphatase (TRAP) staining and measuring the amount of lacunar bone resorption.
RESULTS—The addition of PMMA to monocyte-UMR106 cocultures resulted in a marked increase in the number of TRAP positive osteoclast-like cells and a significant increase in the number of lacunar resorption pits compared with control cultures to which no particles had been added. After the addition of particles of PMMA + 20 mg EHDP, significantly fewer lacunar pits (p=0.00006) and fewer TRAP positive cells were noted compared with cocultures containing PMMA particles alone.
CONCLUSIONS—These results indicate that by mixing a bisphosphonate with bone cement, it is possible to inhibit PMMA particle induced bone resorption. This bisphosphonate inhibition of PMMA biomaterial wear particle containing macrophage-osteoclast differentiation and bone resorption may provide a possible therapeutic strategy to prevent or to control the osteolysis of aseptic loosening.

 Keywords: bisphosphonate; bone resorption; aseptic loosening; macrophages

Full Text

The Full Text of this article is available as a PDF (152.1 KB).

Figure 1  .

Figure 1  

Figure 1  

(a) Indirect immunoperoxidase staining for F4/80 antigen of 24 hour coculture of UMR106 cells and monocytes showing positive reaction (brown staining) for F4/80 antigen on isolated cells (a) in the absence (× 630), and (b) in the presence of PMMA particles that have been phagocytosed (arrow) (× 1000, oil immersion).

Figure 2  .

Figure 2  

Figure 2  

Histochemical staining for TRAP in seven day cocultures of UMR106 cells and murine monocytes showing: (a) numerous clusters of TRAP+ cells in control cocultures containing PMMA particles (× 100); (b) reduction of TRAP+ cell cluster formation in cocultures containing PMMA particles + 20 mg EHDP (× 100).

Figure 3  .

Figure 3  

SEM photomicrograph of human bone slice cultured for 14 days in the presence of UMR106 cells, mouse monocytes, 1,25(OH)2D3 and PMMA particles. This shows extensive lacunar bone resorption with the formation of numerous resorption pits (black bar = 100 µm).

Figure 4  .

Figure 4  

Effect of addition of particles of PMMA + EHDP (5 and 20 mg) and PMMA alone on the mean number of lacunar pits formed on bone slices after 14 days incubation in the presence of UMR106 cells and mouse monocytes. Levels of significance, using Student's paired t test, are indicated.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Athanasou N. A. Cellular biology of bone-resorbing cells. J Bone Joint Surg Am. 1996 Jul;78(7):1096–1112. doi: 10.2106/00004623-199607000-00016. [DOI] [PubMed] [Google Scholar]
  2. Austyn J. M., Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 1981 Oct;11(10):805–815. doi: 10.1002/eji.1830111013. [DOI] [PubMed] [Google Scholar]
  3. Bullough P. G., DiCarlo E. F., Hansraj K. K., Neves M. C. Pathologic studies of total joint replacement. Orthop Clin North Am. 1988 Jul;19(3):611–625. [PubMed] [Google Scholar]
  4. Carano A., Teitelbaum S. L., Konsek J. D., Schlesinger P. H., Blair H. C. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J Clin Invest. 1990 Feb;85(2):456–461. doi: 10.1172/JCI114459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cecchini M. G., Fleisch H. Bisphosphonates in vitro specifically inhibit, among the hematopoietic series, the development of the mouse mononuclear phagocyte lineage. J Bone Miner Res. 1990 Oct;5(10):1019–1027. doi: 10.1002/jbmr.5650051005. [DOI] [PubMed] [Google Scholar]
  6. Chambers T. J. Diphosphonates inhibit bone resorption by macrophages in vitro. J Pathol. 1980 Nov;132(3):255–262. doi: 10.1002/path.1711320307. [DOI] [PubMed] [Google Scholar]
  7. Chambers T. J., Revell P. A., Fuller K., Athanasou N. A. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci. 1984 Mar;66:383–399. doi: 10.1242/jcs.66.1.383. [DOI] [PubMed] [Google Scholar]
  8. Flanagan A. M., Chambers T. J. Inhibition of bone resorption by bisphosphonates: interactions between bisphosphonates, osteoclasts, and bone. Calcif Tissue Int. 1991 Dec;49(6):407–415. doi: 10.1007/BF02555852. [DOI] [PubMed] [Google Scholar]
  9. Horowitz S. M., Algan S. A., Purdon M. A. Pharmacologic inhibition of particulate-induced bone resorption. J Biomed Mater Res. 1996 May;31(1):91–96. doi: 10.1002/(SICI)1097-4636(199605)31:1<91::AID-JBM11>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  10. Hughes D. E., Wright K. R., Uy H. L., Sasaki A., Yoneda T., Roodman G. D., Mundy G. R., Boyce B. F. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995 Oct;10(10):1478–1487. doi: 10.1002/jbmr.5650101008. [DOI] [PubMed] [Google Scholar]
  11. Jiranek W. A., Machado M., Jasty M., Jevsevar D., Wolfe H. J., Goldring S. R., Goldberg M. J., Harris W. H. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg Am. 1993 Jun;75(6):863–879. doi: 10.2106/00004623-199306000-00007. [DOI] [PubMed] [Google Scholar]
  12. Kim K. J., Rubash H. E., Wilson S. C., D'Antonio J. A., McClain E. J. A histologic and biochemical comparison of the interface tissues in cementless and cemented hip prostheses. Clin Orthop Relat Res. 1993 Feb;(287):142–152. [PubMed] [Google Scholar]
  13. Lennox D. W., Schofield B. H., McDonald D. F., Riley L. H., Jr A histologic comparison of aseptic loosening of cemented, press-fit, and biologic ingrowth prostheses. Clin Orthop Relat Res. 1987 Dec;(225):171–191. [PubMed] [Google Scholar]
  14. Linder L., Carlsson A. S. The bone-cement interface in hip arthroplasty. A histologic and enzyme study of stable components. Acta Orthop Scand. 1986 Dec;57(6):495–500. doi: 10.3109/17453678609014777. [DOI] [PubMed] [Google Scholar]
  15. Maloney W. J., Jasty M., Burke D. W., O'Connor D. O., Zalenski E. B., Bragdon C., Harris W. H. Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling. Clin Orthop Relat Res. 1989 Dec;(249):129–140. [PubMed] [Google Scholar]
  16. Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982 May;34(3):285–290. doi: 10.1007/BF02411252. [DOI] [PubMed] [Google Scholar]
  17. Mjöberg B. Theories of wear and loosening in hip prostheses. Wear-induced loosening vs loosening-induced wear--a review. Acta Orthop Scand. 1994 Jun;65(3):361–371. doi: 10.3109/17453679408995473. [DOI] [PubMed] [Google Scholar]
  18. Murray D. W., Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg Br. 1990 Nov;72(6):988–992. doi: 10.1302/0301-620X.72B6.2246303. [DOI] [PubMed] [Google Scholar]
  19. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pandey R., Quinn J. M., Sabokbar A., Athanasou N. A. Bisphosphonate inhibition of bone resorption induced by particulate biomaterial-associated macrophages. Acta Orthop Scand. 1996 Jun;67(3):221–228. doi: 10.3109/17453679608994677. [DOI] [PubMed] [Google Scholar]
  21. Pandey R., Quinn J., Joyner C., Murray D. W., Triffitt J. T., Athanasou N. A. Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells. Ann Rheum Dis. 1996 Jun;55(6):388–395. doi: 10.1136/ard.55.6.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Quinn J. M., McGee J. O., Athanasou N. A. Cellular and hormonal factors influencing monocyte differentiation to osteoclastic bone-resorbing cells. Endocrinology. 1994 Jun;134(6):2416–2423. doi: 10.1210/endo.134.6.8194468. [DOI] [PubMed] [Google Scholar]
  23. Quinn J., Joyner C., Triffitt J. T., Athanasou N. A. Polymethylmethacrylate-induced inflammatory macrophages resorb bone. J Bone Joint Surg Br. 1992 Sep;74(5):652–658. doi: 10.1302/0301-620X.74B5.1527108. [DOI] [PubMed] [Google Scholar]
  24. Revell P. A. Tissue reactions to joint prostheses and the products of wear and corrosion. Curr Top Pathol. 1982;71:73–101. doi: 10.1007/978-3-642-68382-4_3. [DOI] [PubMed] [Google Scholar]
  25. Rodan G. A., Fleisch H. A. Bisphosphonates: mechanisms of action. J Clin Invest. 1996 Jun 15;97(12):2692–2696. doi: 10.1172/JCI118722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sabokbar A., Fujikawa Y., Brett J., Murray D. W., Athanasou N. A. Increased osteoclastic differentiation by PMMA particle-associated macrophages. Inhibitory effect by interleukin 4 and leukemia inhibitory factor. Acta Orthop Scand. 1996 Dec;67(6):593–598. doi: 10.3109/17453679608997763. [DOI] [PubMed] [Google Scholar]
  27. Sabokbar A., Fujikawa Y., Murray D. W., Athanasou N. A. Radio-opaque agents in bone cement increase bone resorption. J Bone Joint Surg Br. 1997 Jan;79(1):129–134. doi: 10.1302/0301-620x.79b1.6966. [DOI] [PubMed] [Google Scholar]
  28. Sahni M., Guenther H. L., Fleisch H., Collin P., Martin T. J. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest. 1993 May;91(5):2004–2011. doi: 10.1172/JCI116422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sato M., Grasser W. Effects of bisphosphonates on isolated rat osteoclasts as examined by reflected light microscopy. J Bone Miner Res. 1990 Jan;5(1):31–40. doi: 10.1002/jbmr.5650050107. [DOI] [PubMed] [Google Scholar]
  30. Schmidt A., Rutledge S. J., Endo N., Opas E. E., Tanaka H., Wesolowski G., Leu C. T., Huang Z., Ramachandaran C., Rodan S. B. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3068–3073. doi: 10.1073/pnas.93.7.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Udagawa N., Takahashi N., Akatsu T., Tanaka H., Sasaki T., Nishihara T., Koga T., Martin T. J., Suda T. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7260–7264. doi: 10.1073/pnas.87.18.7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vitté C., Fleisch H., Guenther H. L. Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology. 1996 Jun;137(6):2324–2333. doi: 10.1210/endo.137.6.8641182. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES