Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1998 Dec;57(12):732–737. doi: 10.1136/ard.57.12.732

Altered leucocyte trafficking and suppressed tumour necrosis factor α release from peripheral blood monocytes after intra-articular glucocorticoid treatment

J Steer 1, D Ma 1, L Dusci 1, G Garas 1, K Pedersen 1, D Joyce 1
PMCID: PMC1752521  PMID: 10070273

Abstract

OBJECTIVES—A generalised transient improvement may follow intra-articular administration of glucocorticoids to patients with inflammatory arthropathy. This may represent a systemic anti-inflammatory effect of glucocorticoid released from the joint, mediated through processes such as altered leucocyte trafficking or suppressed release of pro-inflammatory cytokines. Patients, who had received intra-articular injections of glucocorticoids were therefore studied for evidence of these two systemic effects.
METHODS—Patients with rheumatoid arthritis were studied. Peripheral blood leucocyte counts, tumour necrosis factor α (TNFα) release by peripheral blood monocytes, blood cortisol concentrations, and blood methylprednisolone concentration were measured for 96 hours after intra-articular injection of methylprednisolone acetate.
RESULTS—Measurable concentrations of methylprednisolone were present in blood for up to 96 hours after injection. Significant suppression of the hypothalamic-pituitary-adrenal axis persisted throughout this time. Altered monocyte and lymphocyte trafficking, as evidenced by peripheral blood monocytopenia and lymphopenia, was apparent by four hours after injection and resolved in concordance with the elimination of methylprednisolone. Granulocytosis was observed at 24 and 48 hours. Release of TNFα by endotoxin stimulated peripheral blood monocytes was suppressed at four hours and thereafter. Suppression was maximal at eight hours and was largely reversed by the glucocorticoid antagonist, mifepristone.
CONCLUSIONS—After intra-articular injection of methylprednisolone, blood concentrations of glucocorticoid are sufficient to suppress monocyte TNFα release for at least four days and to transiently alter leucocyte trafficking. These effects help to explain the transient systemic response to intra-articular glucocorticoids. Suppression of TNFα is principally a direct glucocorticoid effect, rather than a consequence of other methylprednisolone induced changes to blood composition.

 Keywords: tumour necrosis factor α; methylprednisolone; human; leucocyte trafficking

Full Text

The Full Text of this article is available as a PDF (146.2 KB).

Figure 1  .

Figure 1  

Methylprednisolone and cortisol concentrations in peripheral blood over 96 hours after intra-articular administration of methylprednisolone. At each time point from four hours to 96 hours, the plasma cortisol concentration was significantly lower than the pre-dose value (p < 0.05 in each case).

Figure 2  .

Figure 2  

Lymphocyte, monocyte, and granulocyte numbers in peripheral blood over 96 hours after intra-articular administration of methylprednisolone. Significant changes in cell numbers from pre-dose values (p < 0.05) are designated by asterisks. The lymphocyte count at 96 hours is significantly higher than the pre-dose value.

Figure 3  .

Figure 3  

TNFα concentrations (mean (SEM)) in LPS stimulated peripheral blood samples reconstituted with plasma, which was collected before intra-articular injection with methylprednisolone and for 96 hours thereafter. Concentrations of TNFα were significantly lower in all post-dose samples than in the pre-dose samples (* p < 0.05).

Figure 4  .

Figure 4  

Blood samples taken eight hours after injection release significantly less TNFα upon LPS stimulation (8 hour + LPS) than samples collected 14 days later (control + LPS), when all methylprednisolone had been eliminated (* p = 0.01, n = 6, Student's t test). When the glucocorticoid antagonist, mifepristone (50 µM) is added to the eight hour sample, TNFα release increases significantly to concentrations comparable with the control sample († p = 0.004, compared with the eight hour sample, without mifepristone; n = 6, Student's t test). Mifepristone itself does not influence TNFα release from the unstimulated day 14 sample (compare control and mifepristone bars).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano Y., Lee S. W., Allison A. C. Inhibition by glucocorticoids of the formation of interleukin-1 alpha, interleukin-1 beta, and interleukin-6: mediation by decreased mRNA stability. Mol Pharmacol. 1993 Feb;43(2):176–182. [PubMed] [Google Scholar]
  2. Arend W. P., Dayer J. M. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum. 1995 Feb;38(2):151–160. doi: 10.1002/art.1780380202. [DOI] [PubMed] [Google Scholar]
  3. Armstrong R. D., English J., Gibson T., Chakraborty J., Marks V. Serum methylprednisolone levels following intra-articular injection of methylprednisolone acetate. Ann Rheum Dis. 1981 Dec;40(6):571–574. doi: 10.1136/ard.40.6.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnett F. C., Edworthy S. M., Bloch D. A., McShane D. J., Fries J. F., Cooper N. S., Healey L. A., Kaplan S. R., Liang M. H., Luthra H. S. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988 Mar;31(3):315–324. doi: 10.1002/art.1780310302. [DOI] [PubMed] [Google Scholar]
  5. Bendrups A., Hilton A., Meager A., Hamilton J. A. Reduction of tumor necrosis factor alpha and interleukin-1 beta levels in human synovial tissue by interleukin-4 and glucocorticoid. Rheumatol Int. 1993;12(6):217–220. doi: 10.1007/BF00301004. [DOI] [PubMed] [Google Scholar]
  6. Boumpas D. T., Chrousos G. P., Wilder R. L., Cupps T. R., Balow J. E. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med. 1993 Dec 15;119(12):1198–1208. doi: 10.7326/0003-4819-119-12-199312150-00007. [DOI] [PubMed] [Google Scholar]
  7. Brostjan C., Anrather J., Csizmadia V., Natarajan G., Winkler H. Glucocorticoids inhibit E-selectin expression by targeting NF-kappaB and not ATF/c-Jun. J Immunol. 1997 Apr 15;158(8):3836–3844. [PubMed] [Google Scholar]
  8. Cronstein B. N., Kimmel S. C., Levin R. I., Martiniuk F., Weissmann G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):9991–9995. doi: 10.1073/pnas.89.21.9991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Derendorf H., Hochhaus G., Möllmann H., Barth J., Krieg M., Tunn S., Möllmann C. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids. J Clin Pharmacol. 1993 Feb;33(2):115–123. doi: 10.1002/j.1552-4604.1993.tb03930.x. [DOI] [PubMed] [Google Scholar]
  10. Farsky S. P., Sannomiya P., Garcia-Leme J. Secreted glucocorticoids regulate leukocyte-endothelial interactions in inflammation. A direct vital microscopic study. J Leukoc Biol. 1995 Mar;57(3):379–386. doi: 10.1002/jlb.57.3.379. [DOI] [PubMed] [Google Scholar]
  11. Fauci A. S., Dale D. C. Alternate-day prednisone therapy and human lymphocyte subpopulations. J Clin Invest. 1975 Jan;55(1):22–32. doi: 10.1172/JCI107914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fauci A. S., Dale D. C. The effect of in vivo hydrocortisone on subpopulations of human lymphocytes. J Clin Invest. 1974 Jan;53(1):240–246. doi: 10.1172/JCI107544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feldmann M., Brennan F. M., Elliott M., Katsikis P., Maini R. N. TNF alpha as a therapeutic target in rheumatoid arthritis. Circ Shock. 1994 Aug;43(4):179–184. [PubMed] [Google Scholar]
  14. Filep J. G., Delalandre A., Payette Y., Földes-Filep E. Glucocorticoid receptor regulates expression of L-selectin and CD11/CD18 on human neutrophils. Circulation. 1997 Jul 1;96(1):295–301. doi: 10.1161/01.cir.96.1.295. [DOI] [PubMed] [Google Scholar]
  15. Hagi K., Uno K., Inaba K., Muramatsu S. Augmenting effect of opioid peptides on murine macrophage activation. J Neuroimmunol. 1994 Feb;50(1):71–76. doi: 10.1016/0165-5728(94)90216-x. [DOI] [PubMed] [Google Scholar]
  16. Hart P. H., Whitty G. A., Burgess D. R., Croatto M., Hamilton J. A. Augmentation of glucocorticoid action on human monocytes by interleukin-4. Lymphokine Res. 1990 Summer;9(2):147–153. [PubMed] [Google Scholar]
  17. Haskard D. O. Cell adhesion molecules in rheumatoid arthritis. Curr Opin Rheumatol. 1995 May;7(3):229–234. doi: 10.1097/00002281-199505000-00012. [DOI] [PubMed] [Google Scholar]
  18. Hübl W., Hauptlorenz S., Tlustos L., Jilch R., Fischer M., Bayer P. M. Precision and accuracy of monocyte counting. Comparison of two hematology analyzers, the manual differential and flow cytometry. Am J Clin Pathol. 1995 Feb;103(2):167–170. doi: 10.1093/ajcp/103.2.167. [DOI] [PubMed] [Google Scholar]
  19. Jones A., Regan M., Ledingham J., Pattrick M., Manhire A., Doherty M. Importance of placement of intra-articular steroid injections. BMJ. 1993 Nov 20;307(6915):1329–1330. doi: 10.1136/bmj.307.6915.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Joyce D. A., Steer J. H., Beilharz M. W., Stranger R. A system for assessment of monokine gene expression using human whole blood. Genet Anal. 1995 Mar;12(1):39–43. doi: 10.1016/1050-3862(95)00104-2. [DOI] [PubMed] [Google Scholar]
  21. Karalis K., Mastorakos G., Sano H., Wilder R. L., Chrousos G. P. Somatostatin may participate in the antiinflammatory actions of glucocorticoids. Endocrinology. 1995 Sep;136(9):4133–4138. doi: 10.1210/endo.136.9.7544277. [DOI] [PubMed] [Google Scholar]
  22. Meager A., Parti S., Leung H., Peil E., Mahon B. Preparation and characterization of monoclonal antibodies directed against antigenic determinants of recombinant human tumour necrosis factor (rTNF). Hybridoma. 1987 Jun;6(3):305–311. doi: 10.1089/hyb.1987.6.305. [DOI] [PubMed] [Google Scholar]
  23. Meuret G., Hoffmann G. Monocyte kinetic studies in normal and disease states. Br J Haematol. 1973 Mar;24(3):275–285. doi: 10.1111/j.1365-2141.1973.tb01652.x. [DOI] [PubMed] [Google Scholar]
  24. O'Leary E. C., Marder P., Zuckerman S. H. Glucocorticoid effects in an endotoxin-induced rat pulmonary inflammation model: differential effects on neutrophil influx, integrin expression, and inflammatory mediators. Am J Respir Cell Mol Biol. 1996 Jul;15(1):97–106. doi: 10.1165/ajrcmb.15.1.8679228. [DOI] [PubMed] [Google Scholar]
  25. Pitzalis C., Pipitone N., Bajocchi G., Hall M., Goulding N., Lee A., Kingsley G., Lanchbury J., Panayi G. Corticosteroids inhibit lymphocyte binding to endothelium and intercellular adhesion: an additional mechanism for their anti-inflammatory and immunosuppressive effect. J Immunol. 1997 May 15;158(10):5007–5016. [PubMed] [Google Scholar]
  26. Sackstein R., Borenstein M. The effects of corticosteroids on lymphocyte recirculation in humans: analysis of the mechanism of impaired lymphocyte migration to lymph node following methylprednisolone administration. J Investig Med. 1995 Feb;43(1):68–77. [PubMed] [Google Scholar]
  27. Schulte H. M., Bamberger C. M., Elsen H., Herrmann G., Bamberger A. M., Barth J. Systemic interleukin-1 alpha and interleukin-2 secretion in response to acute stress and to corticotropin-releasing hormone in humans. Eur J Clin Invest. 1994 Nov;24(11):773–777. doi: 10.1111/j.1365-2362.1994.tb01075.x. [DOI] [PubMed] [Google Scholar]
  28. Standiford T. J., Kunkel S. L., Rolfe M. W., Evanoff H. L., Allen R. M., Strieter R. M. Regulation of human alveolar macrophage- and blood monocyte-derived interleukin-8 by prostaglandin E2 and dexamethasone. Am J Respir Cell Mol Biol. 1992 Jan;6(1):75–81. doi: 10.1165/ajrcmb/6.1.75. [DOI] [PubMed] [Google Scholar]
  29. Star R. A., Rajora N., Huang J., Stock R. C., Catania A., Lipton J. M. Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocyte-stimulating hormone. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8016–8020. doi: 10.1073/pnas.92.17.8016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steer J. H., Vuong Q., Joyce D. A. Suppression of human monocyte tumour necrosis factor-alpha release by glucocorticoid therapy: relationship to systemic monocytopaenia and cortisol suppression. Br J Clin Pharmacol. 1997 Apr;43(4):383–389. doi: 10.1046/j.1365-2125.1997.00586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Swinburn C. R., Wakefield J. M., Newman S. P., Jones P. W. Evidence of prednisolone induced mood change ('steroid euphoria') in patients with chronic obstructive airways disease. Br J Clin Pharmacol. 1988 Dec;26(6):709–713. doi: 10.1111/j.1365-2125.1988.tb05309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thompson J., van Furth R. The effect of glucocorticosteroids on the kinetics of mononuclear phagocytes. J Exp Med. 1970 Mar 1;131(3):429–442. doi: 10.1084/jem.131.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thompson J., van Furth R. The effect of glucocorticosteroids on the proliferation and kinetics of promonocytes and monocytes of the bone marrow. J Exp Med. 1973 Jan 1;137(1):10–21. doi: 10.1084/jem.137.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wenzel I., Roth J., Sorg C. Identification of a novel surface molecule, RM3/1, that contributes to the adhesion of glucocorticoid-induced human monocytes to endothelial cells. Eur J Immunol. 1996 Nov;26(11):2758–2763. doi: 10.1002/eji.1830261131. [DOI] [PubMed] [Google Scholar]
  35. van Woudenberg A. D., Metzelaar M. J., van der Kleij A. A., de Wied D., Burbach J. P., Wiegant V. M. Analysis of proopiomelanocortin (POMC) messenger ribonucleic acid and POMC-derived peptides in human peripheral blood mononuclear cells: no evidence for a lymphocyte-derived POMC system. Endocrinology. 1993 Nov;133(5):1922–1933. doi: 10.1210/endo.133.5.8404638. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES