Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2006–2010. doi: 10.1128/iai.65.6.2006-2010.1997

Generation of a mouse tumor necrosis factor mutant with antiperitonitis and desensitization activities comparable to those of the wild type but with reduced systemic toxicity.

R Lucas 1, B Echtenacher 1, E Sablon 1, P Juillard 1, S Magez 1, J Lou 1, Y Donati 1, F Bosman 1, A Van de Voorde 1, L Fransen 1, D N Männel 1, G E Grau 1, P de Baetselier 1
PMCID: PMC175277  PMID: 9169725

Abstract

In this study, we investigated whether the recently identified lectin-like domain of tumor necrosis factor (TNF) is implicated in its biological activities on mammalian cells. To this end, a mouse TNF (mTNF) triple mutant, T104A-E106A-E109A mTNF (referred to hereafter as triple mTNF), lacking the lectin-like affinity of mTNF for specific oligosaccharides, was compared with the wild-type molecule for various TNF effects in vitro and in vivo. The triple mTNF displayed a 50-fold-reduced TNF receptor 2 (TNFR2)-mediated bioactivity but only a 5-fold-reduced TNFR1-mediated bioactivity in vitro. The specific activity of the triple mutant on L929 fibrosarcoma cells was slightly reduced compared with that of the wild type. We subsequently assessed the systemic toxicity of triple versus wild-type mTNF, since TNFR2 is partially implicated in this activity. The triple mTNF had a significantly reduced toxicity compared with that of wild-type mTNF in vivo. Moreover, we compared the effects of the triple and the wild-type mTNFs in TNFR1-mediated phenomena, such as (i) induction of tolerance towards a lethal mTNF dose and (ii) protective activity in cecal ligation and puncture-induced septic peritonitis. No significant differences between the mutant and wild-type forms were observed. In conclusion, these results indicate that triple mTNF, lacking TNF's lectin-like binding capacity, has reduced systemic toxicity but retains the tolerance-inducing and peritonitis-protective activities of wild-type mTNF.

Full Text

The Full Text of this article is available as a PDF (111.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander H. R., Sheppard B. C., Jensen J. C., Langstein H. N., Buresh C. M., Venzon D., Walker E. C., Fraker D. L., Stovroff M. C., Norton J. A. Treatment with recombinant human tumor necrosis factor-alpha protects rats against the lethality, hypotension, and hypothermia of gram-negative sepsis. J Clin Invest. 1991 Jul;88(1):34–39. doi: 10.1172/JCI115298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  3. Brieland J. K., Remick D. G., Freeman P. T., Hurley M. C., Fantone J. C., Engleberg N. C. In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor alpha and nitric oxide. Infect Immun. 1995 Sep;63(9):3253–3258. doi: 10.1128/iai.63.9.3253-3258.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brouckaert P., Libert C., Everaerdt B., Fiers W. Selective species specificity of tumor necrosis factor for toxicity in the mouse. Lymphokine Cytokine Res. 1992 Aug;11(4):193–196. [PubMed] [Google Scholar]
  5. Echtenacher B., Falk W., Männel D. N., Krammer P. H. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J Immunol. 1990 Dec 1;145(11):3762–3766. [PubMed] [Google Scholar]
  6. Erickson S. L., de Sauvage F. J., Kikly K., Carver-Moore K., Pitts-Meek S., Gillett N., Sheehan K. C., Schreiber R. D., Goeddel D. V., Moore M. W. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature. 1994 Dec 8;372(6506):560–563. doi: 10.1038/372560a0. [DOI] [PubMed] [Google Scholar]
  7. Flynn J. L., Goldstein M. M., Chan J., Triebold K. J., Pfeffer K., Lowenstein C. J., Schreiber R., Mak T. W., Bloom B. R. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995 Jun;2(6):561–572. doi: 10.1016/1074-7613(95)90001-2. [DOI] [PubMed] [Google Scholar]
  8. Fransen L., Van der Heyden J., Ruysschaert R., Fiers W. Recombinant tumor necrosis factor: its effect and its synergism with interferon-gamma on a variety of normal and transformed human cell lines. Eur J Cancer Clin Oncol. 1986 Apr;22(4):419–426. doi: 10.1016/0277-5379(86)90107-0. [DOI] [PubMed] [Google Scholar]
  9. Hession C., Decker J. M., Sherblom A. P., Kumar S., Yue C. C., Mattaliano R. J., Tizard R., Kawashima E., Schmeissner U., Heletky S. Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science. 1987 Sep 18;237(4821):1479–1484. doi: 10.1126/science.3498215. [DOI] [PubMed] [Google Scholar]
  10. Lewis M., Tartaglia L. A., Lee A., Bennett G. L., Rice G. C., Wong G. H., Chen E. Y., Goeddel D. V. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2830–2834. doi: 10.1073/pnas.88.7.2830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lucas R., Magez S., De Leys R., Fransen L., Scheerlinck J. P., Rampelberg M., Sablon E., De Baetselier P. Mapping the lectin-like activity of tumor necrosis factor. Science. 1994 Feb 11;263(5148):814–817. doi: 10.1126/science.8303299. [DOI] [PubMed] [Google Scholar]
  12. Lévesque A., Paquet A., Pagé M. Improved fluorescent bioassay for the detection of tumor necrosis factor activity. J Immunol Methods. 1995 Jan 13;178(1):71–76. doi: 10.1016/0022-1759(94)00243-p. [DOI] [PubMed] [Google Scholar]
  13. McMasters K. M., Peyton J. C., Hadjiminas D. J., Cheadle W. G. Endotoxin and tumour necrosis factor do not cause mortality from caecal ligation and puncture. Cytokine. 1994 Sep;6(5):530–536. doi: 10.1016/1043-4666(94)90081-7. [DOI] [PubMed] [Google Scholar]
  14. Pfeffer K., Matsuyama T., Kündig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Krönke M., Mak T. W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993 May 7;73(3):457–467. doi: 10.1016/0092-8674(93)90134-c. [DOI] [PubMed] [Google Scholar]
  15. Ranges G. E., Bombara M. P., Aiyer R. A., Rice G. G., Palladino M. A., Jr Tumor necrosis factor-alpha as a proliferative signal for an IL-2-dependent T cell line: strict species specificity of action. J Immunol. 1989 Feb 15;142(4):1203–1208. [PubMed] [Google Scholar]
  16. Remick D., Manohar P., Bolgos G., Rodriguez J., Moldawer L., Wollenberg G. Blockade of tumor necrosis factor reduces lipopolysaccharide lethality, but not the lethality of cecal ligation and puncture. Shock. 1995 Aug;4(2):89–95. doi: 10.1097/00024382-199508000-00002. [DOI] [PubMed] [Google Scholar]
  17. Rothe J., Lesslauer W., Lötscher H., Lang Y., Koebel P., Köntgen F., Althage A., Zinkernagel R., Steinmetz M., Bluethmann H. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993 Aug 26;364(6440):798–802. doi: 10.1038/364798a0. [DOI] [PubMed] [Google Scholar]
  18. Steinshamn S., Bemelmans M. H., van Tits L. J., Bergh K., Buurman W. A., Waage A. TNF receptors in murine Candida albicans infection: evidence for an important role of TNF receptor p55 in antifungal defense. J Immunol. 1996 Sep 1;157(5):2155–2159. [PubMed] [Google Scholar]
  19. Tacchini-Cottier F., Lou J. N., Roberts D. J., Garcia A. M., Grau G. E. Detection of a LFA-1-like epitope on the surface of erythrocytes infected with a strain of Plasmodium falciparum. Immunology. 1995 Jun;85(2):205–213. [PMC free article] [PubMed] [Google Scholar]
  20. Takahashi N., Brouckaert P., Fiers W. Induction of tolerance allows separation of lethal and antitumor activities of tumor necrosis factor in mice. Cancer Res. 1991 May 1;51(9):2366–2372. [PubMed] [Google Scholar]
  21. Takeda K., Iwamoto S., Takeda M. Lymphotoxin and TNF differ greatly in capacity to induce differentiation of human myeloblastic leukemia ML-1 cells. Biochem Mol Biol Int. 1994 Apr;32(6):1109–1119. [PubMed] [Google Scholar]
  22. Van Ostade X., Vandenabeele P., Everaerdt B., Loetscher H., Gentz R., Brockhaus M., Lesslauer W., Tavernier J., Brouckaert P., Fiers W. Human TNF mutants with selective activity on the p55 receptor. Nature. 1993 Jan 21;361(6409):266–269. doi: 10.1038/361266a0. [DOI] [PubMed] [Google Scholar]
  23. Van Zee K. J., Stackpole S. A., Montegut W. J., Rogy M. A., Calvano S. E., Hsu K. C., Chao M., Meschter C. L., Loetscher H., Stüber D. A human tumor necrosis factor (TNF) alpha mutant that binds exclusively to the p55 TNF receptor produces toxicity in the baboon. J Exp Med. 1994 Apr 1;179(4):1185–1191. doi: 10.1084/jem.179.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vandenabeele P., Declercq W., Beyaert R., Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 1995 Oct;5(10):392–399. doi: 10.1016/s0962-8924(00)89088-1. [DOI] [PubMed] [Google Scholar]
  25. Wallach D., Holtmann H., Engelmann H., Nophar Y. Sensitization and desensitization to lethal effects of tumor necrosis factor and IL-1. J Immunol. 1988 May 1;140(9):2994–2999. [PubMed] [Google Scholar]
  26. Wichterman K. A., Baue A. E., Chaudry I. H. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res. 1980 Aug;29(2):189–201. doi: 10.1016/0022-4804(80)90037-2. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES