Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2060–2066. doi: 10.1128/iai.65.6.2060-2066.1997

Yersinia enterocolitica serotype O:3 alters the expression of serologic HLA-B27 epitopes on human monocytes.

M Wuorela 1, S Jalkanen 1, J Kirveskari 1, P Laitio 1, K Granfors 1
PMCID: PMC175284  PMID: 9169732

Abstract

The expression of serologic HLA-B27 epitopes on leukocytes of patients with reactive arthritis or ankylosing spondylitis has been shown to be modified in the course of the disease. The purpose of this work was to study whether phagocytosis of arthritis-triggering microbes in vitro alters the expression of HLA-B27 molecules on human antigen-presenting cells and to characterize the underlying mechanisms. Human monocytes and HLA-B27- or HLA-A2-transfected human U-937 cells were exposed to Yersinia enterocolitica serotype O:3. The expression of different epitopes of HLA-B27 was monitored by using immunofluorescence, and their synthesis was determined by quantitative immunoprecipitation. Our results show that phagocytosis of Y. enterocolitica serotype O:3 changed the expression of serological HLA-B27 epitopes. This was due to the reduced synthesis of HLA-B27 molecules. The expression of especially the epitopes which depend on the presence of peptides in the antigen-binding groove was changed. The expression of the ME1 epitope, which has been shown to be important for T-cell recognition in patients with reactive arthritis, was decreased. Down-regulation of epitopes important for the T-cell recognition may impair the elimination of arthritis-triggering microbes and lead to persistent infection. In addition, Y. enterocolitica serotype O:3 seemed to alter the repertoire of peptides presented by the HLA-B27 molecules on human monocytes. This may have a role in the pathogenesis of reactive arthritis via an autoimmune mechanism.

Full Text

The Full Text of this article is available as a PDF (373.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aho K., Ahvonen P., Lassus A., Sievers K., Tiilikainen A. HL-A 27 in reactive arthritis. A study of Yersinia arthritis and Reiter's disease. Arthritis Rheum. 1974 Sep-Oct;17(5):521–526. doi: 10.1002/art.1780170505. [DOI] [PubMed] [Google Scholar]
  2. Amor B., Kahan A., Georgiadis A. E. Transient loss of HLA B27. Lancet. 1978 Feb 4;1(8058):284–284. doi: 10.1016/s0140-6736(78)90540-8. [DOI] [PubMed] [Google Scholar]
  3. Berger A. E., Davis J. E., Cresswell P. Monoclonal antibody to HLA-A3. Hybridoma. 1982;1(2):87–90. doi: 10.1089/hyb.1.1982.1.87. [DOI] [PubMed] [Google Scholar]
  4. Ellis S. A., Taylor C., McMichael A. Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol. 1982 Aug;5(1):49–59. doi: 10.1016/0198-8859(82)90030-1. [DOI] [PubMed] [Google Scholar]
  5. Gao X. M., Wordsworth P., McMichael A. J., Kyaw M. M., Seifert M., Rees D., Dougan G. Homocysteine modification of HLA antigens and its immunological consequences. Eur J Immunol. 1996 Jul;26(7):1443–1450. doi: 10.1002/eji.1830260707. [DOI] [PubMed] [Google Scholar]
  6. Geczy A. F., McGuigan L. E., Sullivan J. S., Edmonds J. P. Cytotoxic T lymphocytes against disease-associated determinant(s) in ankylosing spondylitis. J Exp Med. 1986 Sep 1;164(3):932–937. doi: 10.1084/jem.164.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gemski P., Lazere J. R., Casey T. Plasmid associated with pathogenicity and calcium dependency of Yersinia enterocolitica. Infect Immun. 1980 Feb;27(2):682–685. doi: 10.1128/iai.27.2.682-685.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Granfors K. Do bacterial antigens cause reactive arthritis? Rheum Dis Clin North Am. 1992 Feb;18(1):37–48. [PubMed] [Google Scholar]
  9. Grumet F. C., Fendly B. M., Engleman E. G. Monoclonal anti-HLA-B27 antibody (B27M1): production and lack of detectable typing difference between patients with ankylosing spondylitis, Reiter's syndrome, and normal controls. Lancet. 1981 Jul 25;2(8239):174–176. doi: 10.1016/s0140-6736(81)90358-5. [DOI] [PubMed] [Google Scholar]
  10. Guo H. C., Madden D. R., Silver M. L., Jardetzky T. S., Gorga J. C., Strominger J. L., Wiley D. C. Comparison of the P2 specificity pocket in three human histocompatibility antigens: HLA-A*6801, HLA-A*0201, and HLA-B*2705. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8053–8057. doi: 10.1073/pnas.90.17.8053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haynes B. F., Reisner E. G., Hemler M. E., Strominger J. L., Eisenbarth G. S. Description of monoclonal antibody defining an HLA allotypic determinant that includes specificities within the B5 cross-reacting group. Hum Immunol. 1982 Jul;4(4):273–285. doi: 10.1016/0198-8859(82)90001-5. [DOI] [PubMed] [Google Scholar]
  12. Hermann E., Yu D. T., Meyer zum Büschenfelde K. H., Fleischer B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet. 1993 Sep 11;342(8872):646–650. doi: 10.1016/0140-6736(93)91760-j. [DOI] [PubMed] [Google Scholar]
  13. Hill A. B., Barnett B. C., McMichael A. J., McGeoch D. J. HLA class I molecules are not transported to the cell surface in cells infected with herpes simplex virus types 1 and 2. J Immunol. 1994 Mar 15;152(6):2736–2741. [PubMed] [Google Scholar]
  14. Huang F., Hermann E., Wang J., Cheng X. K., Tsai W. C., Wen J., Kuipers J. G., Kellner H., Ackermann B., Roth G. A patient-derived cytotoxic T-lymphocyte clone and two peptide-dependent monoclonal antibodies recognize HLA-B27-peptide complexes with low stringency for peptide sequences. Infect Immun. 1996 Jan;64(1):120–127. doi: 10.1128/iai.64.1.120-127.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kageyama S., Tsomides T. J., Sykulev Y., Eisen H. N. Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. J Immunol. 1995 Jan 15;154(2):567–576. [PubMed] [Google Scholar]
  16. Kapasi K., Inman R. D. ME1 epitope of HLA-B27 confers class I-mediated modulation of gram-negative bacterial invasion. J Immunol. 1994 Jul 15;153(2):833–840. [PubMed] [Google Scholar]
  17. Kirveskari J., Kellner H., Wuorela M., Soini H., Frankenberger B., Leirisalo-Repo M., Weiss E. H., Granfors K. False-negative serological HLA-B27 typing results may be due to altered antigenic epitopes and can be detected by polymerase chain reaction. Br J Rheumatol. 1997 Feb;36(2):185–189. doi: 10.1093/rheumatology/36.2.185. [DOI] [PubMed] [Google Scholar]
  18. Koller B. H., Orr H. T. Cloning and complete sequence of an HLA-A2 gene: analysis of two HLA-A alleles at the nucleotide level. J Immunol. 1985 Apr;134(4):2727–2733. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Laird W. J., Cavanaugh D. C. Correlation of autoagglutination and virulence of yersiniae. J Clin Microbiol. 1980 Apr;11(4):430–432. doi: 10.1128/jcm.11.4.430-432.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leirisalo-Repo M., Suoranta H. Ten-year follow-up study of patients with Yersinia arthritis. Arthritis Rheum. 1988 Apr;31(4):533–537. doi: 10.1002/art.1780310410. [DOI] [PubMed] [Google Scholar]
  22. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature. 1991 Sep 26;353(6342):321–325. doi: 10.1038/353321a0. [DOI] [PubMed] [Google Scholar]
  23. McCutcheon J. A., Lutz C. T. Mutagenesis around residue 176 on HLA-B*0702 characterizes multiple distinct epitopes for anti-HLA antibodies. Hum Immunol. 1992 Oct;35(2):125–131. doi: 10.1016/0198-8859(92)90020-n. [DOI] [PubMed] [Google Scholar]
  24. McCutcheon J. A., Smith K. D., Valenzuela A., Aalbers K., Lutz C. T. HLA-B*0702 antibody epitopes are affected indirectly by distant antigen residues. Hum Immunol. 1993 Feb;36(2):69–75. doi: 10.1016/0198-8859(93)90108-d. [DOI] [PubMed] [Google Scholar]
  25. Neefjes J. J., Ploegh H. L. Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with beta 2-microglobulin: differential effects of inhibition of glycosylation on class I subunit association. Eur J Immunol. 1988 May;18(5):801–810. doi: 10.1002/eji.1830180522. [DOI] [PubMed] [Google Scholar]
  26. Neumüller J., Fischer M., Eberl R. Failure of the serological determination of HLA-B27 due to antigen masking in patients with ankylosing spondylitis. Rheumatol Int. 1993;13(4):163–167. doi: 10.1007/BF00301265. [DOI] [PubMed] [Google Scholar]
  27. Parham P., Antonelli P., Herzenberg L. A., Kipps T. J., Fuller A., Ward F. E. Further studies on the epitopes of HLA-B7 defined by murine monoclonal antibodies. Hum Immunol. 1986 Jan;15(1):44–67. doi: 10.1016/0198-8859(86)90316-2. [DOI] [PubMed] [Google Scholar]
  28. Parham P., Barnstable C. J., Bodmer W. F. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. J Immunol. 1979 Jul;123(1):342–349. [PubMed] [Google Scholar]
  29. Parham P., Brodsky F. M. Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol. 1981 Dec;3(4):277–299. doi: 10.1016/0198-8859(81)90065-3. [DOI] [PubMed] [Google Scholar]
  30. Pei R., Arjomand-Shamsai M., Deng C. T., Cesbron A., Bignon J. D., Lee J. H. A monospecific HLA-B27 fluorescein isothiocyanate-conjugated monoclonal antibody for rapid, simple and accurate HLA-B27 typing. Tissue Antigens. 1993 Apr;41(4):200–203. doi: 10.1111/j.1399-0039.1993.tb02003.x. [DOI] [PubMed] [Google Scholar]
  31. Reid P. A., Watts C. Cycling of cell-surface MHC glycoproteins through primaquine-sensitive intracellular compartments. Nature. 1990 Aug 16;346(6285):655–657. doi: 10.1038/346655a0. [DOI] [PubMed] [Google Scholar]
  32. Ringrose J. H., Yard B. A., Muijsers A., Boog C. J., Feltkamp T. E. Comparison of peptides eluted from the groove of HLA-B27 from Salmonella infected and non-infected cells. Clin Rheumatol. 1996 Jan;15 (Suppl 1):74–78. doi: 10.1007/BF03342652. [DOI] [PubMed] [Google Scholar]
  33. Salmi M., Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science. 1992 Sep 4;257(5075):1407–1409. doi: 10.1126/science.1529341. [DOI] [PubMed] [Google Scholar]
  34. Salter R. D., Clayberger C., Lomen C. E., Krensky A. M., Parham P. In vitro mutagenesis at a single residue introduces B and T cell epitopes into a class I HLA molecule. J Exp Med. 1987 Jul 1;166(1):283–288. doi: 10.1084/jem.166.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Santos-Aguado J., Barbosa J. A., Biro P. A., Strominger J. L. Molecular characterization of serologic recognition sites in the human HLA-A2 molecule. J Immunol. 1988 Oct 15;141(8):2811–2818. [PubMed] [Google Scholar]
  36. Stryhn A., Pedersen L. O., Romme T., Olsen A. C., Nissen M. H., Thorpe C. J., Buus S. pH dependence of MHC class I-restricted peptide presentation. J Immunol. 1996 Jun 1;156(11):4191–4197. [PubMed] [Google Scholar]
  37. Sundström C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976 May 15;17(5):565–577. doi: 10.1002/ijc.2910170504. [DOI] [PubMed] [Google Scholar]
  38. Taurog J. D., Lowen L., Forman J., Hammer R. E. HLA-B27 in inbred and non-inbred transgenic mice. Cell surface expression and recognition as an alloantigen in the absence of human beta 2-microglobulin. J Immunol. 1988 Dec 1;141(11):4020–4023. [PubMed] [Google Scholar]
  39. Taurog J. D., el-Zaatari F. A. In vitro mutagenesis of HLA-B27. Substitution of an unpaired cysteine residue in the alpha 1 domain causes loss of antibody-defined epitopes. J Clin Invest. 1988 Sep;82(3):987–992. doi: 10.1172/JCI113708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Toubert A., Raffoux C., Boretto J., Sire J., Sodoyer R., Thurau S. R., Amor B., Colombani J., Lemonnier F. A., Jordan B. R. Epitope mapping of HLA-B27 and HLA-B7 antigens by using intradomain recombinants. J Immunol. 1988 Oct 1;141(7):2503–2509. [PubMed] [Google Scholar]
  41. Trapani J. A., Vaughan H. A., Sparrow R. L., Tait B. D., McKenzie I. F. Description of a mouse monoclonal anti-HLA-B27 antibody HLA-ABC-m3. Hum Immunol. 1983 Aug;7(4):205–216. doi: 10.1016/0198-8859(83)90058-7. [DOI] [PubMed] [Google Scholar]
  42. Vega M. A., Ezquerra A., Rojo S., Aparicio P., Bragado R., López de Castro J. A. Structural analysis of an HLA-B27 functional variant: identification of residues that contribute to the specificity of recognition by cytolytic T lymphocytes. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7394–7398. doi: 10.1073/pnas.82.21.7394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Villanueva M. S., Beckers C. J., Pamer E. G. Infection with Listeria monocytogenes impairs sialic acid addition to host cell glycoproteins. J Exp Med. 1994 Dec 1;180(6):2137–2145. doi: 10.1084/jem.180.6.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang J., Yu D. T., Fukazawa T., Kellner H., Wen J., Cheng X. K., Roth G., Williams K. M., Raybourne R. B. A monoclonal antibody that recognizes HLA-B27 in the context of peptides. J Immunol. 1994 Feb 1;152(3):1197–1205. [PubMed] [Google Scholar]
  45. Wen J., Wang J., Kuipers J. G., Huang F., Williams K. M., Raybourne R. B., Yu D. T. Analysis of HLA-B*2705 peptide motif, using T2 cells and monoclonal antibody ME1. Immunogenetics. 1994;39(6):444–446. doi: 10.1007/BF00176165. [DOI] [PubMed] [Google Scholar]
  46. Whelan M. A., Archer J. R. Chemical reactivity of an HLA-B27 thiol group. Eur J Immunol. 1993 Dec;23(12):3278–3285. doi: 10.1002/eji.1830231233. [DOI] [PubMed] [Google Scholar]
  47. Wuorela M., Jalkanen S., Toivanen P., Granfors K. Yersinia lipopolysaccharide is modified by human monocytes. Infect Immun. 1993 Dec;61(12):5261–5270. doi: 10.1128/iai.61.12.5261-5270.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. el-Zaatari F. A., Sams K. C., Taurog J. D. In vitro mutagenesis of HLA-B27. Amino acid substitutions at position 67 disrupt anti-B27 monoclonal antibody binding in direct relation to the size of the substituted side chain. J Immunol. 1990 Feb 15;144(4):1512–1517. [PubMed] [Google Scholar]
  49. el-Zaatari F. A., Taurog J. D. In vitro mutagenesis of HLA-B27: single and multiple amino acid substitutions at consensus B27 sites identify distinct monoclonal antibody-defined epitopes. Hum Immunol. 1992 Apr;33(4):243–248. doi: 10.1016/0198-8859(92)90331-g. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES