Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2067–2073. doi: 10.1128/iai.65.6.2067-2073.1997

Reactivation of chlamydial genital tract infection in mice.

T W Cotter 1, G S Miranpuri 1, K H Ramsey 1, C E Poulsen 1, G I Byrne 1
PMCID: PMC175285  PMID: 9169733

Abstract

A model was developed to study chlamydial quiescence in C3H/HeN (C3H) and C57BL/6N (C57) mice following genital tract infection by Chlamydia trachomatis MoPn. Reactivation of chlamydial shedding following immunosuppression indicated that viable MoPn remained in the genital tract for up to 4 or 5 weeks after the apparent clearance of a primary infection. Either cyclophosphamide or cortisone acetate treatment could cause reactivation, but cyclophosphamide was more effective. However, the frequency of reactivation by either drug diminished with time in both mouse strains. Progesterone treatment prior to infection of C57 mice greatly reduced the frequency of reactivation by cyclophosphamide and also correlated with the development of marked fluid accumulation and distension of the uterine horns in the vast majority of those animals. This pathology was apparent by 5 to 7 weeks postinfection and was consistently seen through 110 days postinfection. Neither of these phenomena was observed in C57 mice that had not been treated with progesterone or in C3H mice under any conditions tested. The infecting dose of MoPn did not clearly influence the frequency of reactivation in either inbred strain as defined by this model.

Full Text

The Full Text of this article is available as a PDF (763.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beatty W. L., Byrne G. I., Morrison R. P. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3998–4002. doi: 10.1073/pnas.90.9.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beatty W. L., Morrison R. P., Byrne G. I. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev. 1994 Dec;58(4):686–699. doi: 10.1128/mr.58.4.686-699.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blander S. J., Amortegui A. J. Mice immunized with a chlamydial extract have no increase in early protective immunity despite increased inflammation following genital infection by the mouse pneumonitis agent of Chlamydia trachomatis. Infect Immun. 1994 Sep;62(9):3617–3624. doi: 10.1128/iai.62.9.3617-3624.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caldwell H. D., Kromhout J., Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981 Mar;31(3):1161–1176. doi: 10.1128/iai.31.3.1161-1176.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cotter T. W., Meng Q., Shen Z. L., Zhang Y. X., Su H., Caldwell H. D. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect Immun. 1995 Dec;63(12):4704–4714. doi: 10.1128/iai.63.12.4704-4714.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grayston J. T., Gale J. L., Yeh L. J., Yang C. Y. Pathogenesis and immunology of trachoma. Trans Assoc Am Physicians. 1972;85:203–211. [PubMed] [Google Scholar]
  7. Grayston J. T., Wang S. P., Yeh L. J., Kuo C. C. Importance of reinfection in the pathogenesis of trachoma. Rev Infect Dis. 1985 Nov-Dec;7(6):717–725. doi: 10.1093/clinids/7.6.717. [DOI] [PubMed] [Google Scholar]
  8. Holland S. M., Hudson A. P., Bobo L., Whittum-Hudson J. A., Viscidi R. P., Quinn T. C., Taylor H. R. Demonstration of chlamydial RNA and DNA during a culture-negative state. Infect Immun. 1992 May;60(5):2040–2047. doi: 10.1128/iai.60.5.2040-2047.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ito J. I., Jr, Lyons J. M., Airo-Brown L. P. Variation in virulence among oculogenital serovars of Chlamydia trachomatis in experimental genital tract infection. Infect Immun. 1990 Jun;58(6):2021–2023. doi: 10.1128/iai.58.6.2021-2023.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laitinen K., Laurila A. L., Leinonen M., Saikku P. Reactivation of Chlamydia pneumoniae infection in mice by cortisone treatment. Infect Immun. 1996 Apr;64(4):1488–1490. doi: 10.1128/iai.64.4.1488-1490.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malinverni R., Kuo C. C., Campbell L. A., Grayston J. T. Reactivation of Chlamydia pneumoniae lung infection in mice by cortisone. J Infect Dis. 1995 Aug;172(2):593–594. doi: 10.1093/infdis/172.2.593. [DOI] [PubMed] [Google Scholar]
  12. Morrison R. P., Feilzer K., Tumas D. B. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun. 1995 Dec;63(12):4661–4668. doi: 10.1128/iai.63.12.4661-4668.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ORMSBY H. L., THOMPSON G. A., COUSINEAU G. G., LLOYD L. A., HASSARD J. Topical therapy in inclusion conjunctivitis. Am J Ophthalmol. 1952 Dec;35(12):1811–1814. doi: 10.1016/0002-9394(52)92022-9. [DOI] [PubMed] [Google Scholar]
  14. Pal S., Fielder T. J., Peterson E. M., de la Maza L. M. Analysis of the immune response in mice following intrauterine infection with the Chlamydia trachomatis mouse pneumonitis biovar. Infect Immun. 1993 Feb;61(2):772–776. doi: 10.1128/iai.61.2.772-776.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patton D. L., Wølner-Hanssen P., Cosgrove S. J., Holmes K. K. The effects of Chlamydia trachomatis on the female reproductive tract of the Macaca nemestrina after a single tubal challenge following repeated cervical inoculations. Obstet Gynecol. 1990 Oct;76(4):643–650. [PubMed] [Google Scholar]
  16. Rasmussen S. J., Timms P., Beatty P. R., Stephens R. S. Cytotoxic-T-lymphocyte-mediated cytolysis of L cells persistently infected with Chlamydia spp. Infect Immun. 1996 Jun;64(6):1944–1949. doi: 10.1128/iai.64.6.1944-1949.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stephens R. S., Chen W. J., Kuo C. C. Effects of corticosteroids and cyclophosphamide on a mouse model of Chlamydia trachomatis pneumonitis. Infect Immun. 1982 Feb;35(2):680–684. doi: 10.1128/iai.35.2.680-684.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Su H., Caldwell H. D. CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun. 1995 Sep;63(9):3302–3308. doi: 10.1128/iai.63.9.3302-3308.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Taylor H. R., Johnson S. L., Prendergast R. A., Schachter J., Dawson C. R., Silverstein A. M. An animal model of trachoma II. The importance of repeated reinfection. Invest Ophthalmol Vis Sci. 1982 Oct;23(4):507–515. [PubMed] [Google Scholar]
  20. Taylor H. R., Johnson S. L., Schachter J., Caldwell H. D., Prendergast R. A. Pathogenesis of trachoma: the stimulus for inflammation. J Immunol. 1987 May 1;138(9):3023–3027. [PubMed] [Google Scholar]
  21. Taylor H. R., Prendergast R. A., Dawson C. R., Schachter J., Silverstein A. M. An animal model for cicatrizing trachoma. Invest Ophthalmol Vis Sci. 1981 Sep;21(3):422–433. [PubMed] [Google Scholar]
  22. WANG S., GRAYSTON J. T. Trachoma in the Taiwan monkey Macaca cyclopis. Ann N Y Acad Sci. 1962 Mar 5;98:177–187. doi: 10.1111/j.1749-6632.1962.tb30542.x. [DOI] [PubMed] [Google Scholar]
  23. Yang Y. S., Kuo C. C., Chen W. J. Reactivation of Chlamydia trachomatis lung infection in mice by cortisone. Infect Immun. 1983 Feb;39(2):655–658. doi: 10.1128/iai.39.2.655-658.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhong G., Brunham R. C. Antibody responses to the chlamydial heat shock proteins hsp60 and hsp70 are H-2 linked. Infect Immun. 1992 Aug;60(8):3143–3149. doi: 10.1128/iai.60.8.3143-3149.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. de la Maza L. M., Pal S., Khamesipour A., Peterson E. M. Intravaginal inoculation of mice with the Chlamydia trachomatis mouse pneumonitis biovar results in infertility. Infect Immun. 1994 May;62(5):2094–2097. doi: 10.1128/iai.62.5.2094-2097.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES