Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2094–2099. doi: 10.1128/iai.65.6.2094-2099.1997

Pelvic inflammatory disease isolates of Neisseria gonorrhoeae are distinguished by C1q-dependent virulence for newborn rats and by the sac-4 region.

S Nowicki 1, P Ram 1, T Pham 1, P Goluszko 1, S Morse 1, G D Anderson 1, B Nowicki 1
PMCID: PMC175289  PMID: 9169737

Abstract

The virulence mechanism of Neisseria gonorrhoeae in pelvic inflammatory disease (PID) is not well understood, and an objective diagnostic method to identify patients with PID is lacking. We investigated the hypothesis that development of PID was associated with a C1q-dependent virulence property of gonococcal strains. Recent development of a C1q-dependent experimental model of gonococcal infection (S. Nowicki, M. Martens, and B. Nowicki, Infect. Immun. 63:4790-4794, 1995) created an opportunity to evaluate this hypothesis in vivo. Therefore, the virulence of 32 clinical isolates (18 PID isolates and 14 local infection [LI] isolates) was evaluated in experimental rat pups. A serum bactericidal assay was used to characterize a gonococcal serum-resistant (ser(r)) phenotype. PCR primers designed to amplify a suitable-size gonococcal sac-4 DNA fragment (unique for serum-resistant donor JC1) were used to evaluate the association of serum-resistant genotype sac-4 with two phenotypes: C1q-dependent virulence expressed in vivo and resistance to bactericidal activity of human serum expressed in vitro. Strains were also characterized by auxotyping and serotyping. Of 32 gonococcal strains, 15 (46.7%) caused C1q-dependent bacteremia in rat pups and were sac-4 positive and ser(r). However, of the 15 isolates, 13 (87%) represented strains associated with human PID and 2 (13%) were associated with LI. None of the strains that were completely serum-sensitive (ser(s)) and sac-4 negative produced C1q-dependent bacteremia in rat pups, suggesting that both ser(r) and sac-4 were required for infection. The serum-resistant recombinant recipient of sac-4 produced C1q-dependent bacteremia in the rat model similarly to the serum-resistant donor of sac-4; the serum-sensitive parent strain did not produce bacteremia. These data suggest that sac-4-mediated serum resistance conferred C1q-dependent virulence and is a unique characteristic associated with PID. These newly identified features may contribute to the understanding of the pathogenic mechanism of PID-associated strains and open perspectives for establishing novel diagnostic methods.

Full Text

The Full Text of this article is available as a PDF (178.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertí S., Marqués G., Camprubí S., Merino S., Tomás J. M., Vivanco F., Benedí V. J. C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins. Infect Immun. 1993 Mar;61(3):852–860. doi: 10.1128/iai.61.3.852-860.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buchan H., Vessey M., Goldacre M., Fairweather J. Morbidity following pelvic inflammatory disease. Br J Obstet Gynaecol. 1993 Jun;100(6):558–562. doi: 10.1111/j.1471-0528.1993.tb15308.x. [DOI] [PubMed] [Google Scholar]
  3. Cannon J. G., Buchanan T. M., Sparling P. F. Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect Immun. 1983 May;40(2):816–819. doi: 10.1128/iai.40.2.816-819.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cannon J. G., Lee T. J., Guymon L. F., Sparling P. F. Genetics of serum resistance in Neisseria gonorrhoeae: the sac-1 genetic locus. Infect Immun. 1981 May;32(2):547–552. doi: 10.1128/iai.32.2.547-552.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenstein B. I., Masi A. T. Disseminated gonococcal infection (DGI) and gonococcal arthritis (GCA): I. Bacteriology, epidemiology, host factors, pathogen factors, and pathology. Semin Arthritis Rheum. 1981 Feb;10(3):155–172. doi: 10.1016/s0049-0172(81)80001-7. [DOI] [PubMed] [Google Scholar]
  6. Harriman G. R., Podack E. R., Braude A. I., Corbeil L. C., Esser A. F., Curd J. G. Activation of complement by serum-resistant Neisseria gonorrhoeae. Assembly of the membrane attack complex without subsequent cell death. J Exp Med. 1982 Oct 1;156(4):1235–1249. doi: 10.1084/jem.156.4.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mandrell R. E., Lesse A. J., Sugai J. V., Shero M., Griffiss J. M., Cole J. A., Parsons N. J., Smith H., Morse S. A., Apicella M. A. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J Exp Med. 1990 May 1;171(5):1649–1664. doi: 10.1084/jem.171.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McCutchan J. A., Katzenstein D., Norquist D., Chikami G., Wunderlich A., Braude A. I. Role of blocking antibody in disseminated gonococcal infection. J Immunol. 1978 Nov;121(5):1884–1888. [PubMed] [Google Scholar]
  9. McShan W. M., Williams R. P., Hull R. A. A recombinant molecule from a disseminating strain of Neisseria gonorrhoeae that confers serum bactericidal resistance. Infect Immun. 1987 Dec;55(12):3017–3022. doi: 10.1128/iai.55.12.3017-3022.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nowicki S., Martens M. G., Nowicki B. J. Gonococcal infection in a nonhuman host is determined by human complement C1q. Infect Immun. 1995 Dec;63(12):4790–4794. doi: 10.1128/iai.63.12.4790-4794.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nowicki S., Nowicki B., Martens M., Kaul A., Flores G., Kumar D. Host factors in the attachment of gonococcal cells to pelvic tissue. Ann N Y Acad Sci. 1994 Aug 15;730:292–294. doi: 10.1111/j.1749-6632.1994.tb44269.x. [DOI] [PubMed] [Google Scholar]
  12. Parsons N. J., Patel P. V., Tan E. L., Andrade J. R., Nairn C. A., Goldner M., Cole J. A., Smith H. Cytidine 5'-monophospho-N-acetyl neuraminic acid and a low molecular weight factor from human blood cells induce lipopolysaccharide alteration in gonococci when conferring resistance to killing by human serum. Microb Pathog. 1988 Oct;5(4):303–309. doi: 10.1016/0882-4010(88)90103-9. [DOI] [PubMed] [Google Scholar]
  13. Rice P. A., McCormack W. M., Kasper D. L. Natural serum bactericidal activity against Neisseria gonorrhoeae isolates from disseminated, locally invasive, and uncomplicated disease. J Immunol. 1980 May;124(5):2105–2109. [PubMed] [Google Scholar]
  14. Rice P. A. Molecular basis for serum resistance in Neisseria gonorrhoeae. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S112–S117. doi: 10.1128/cmr.2.suppl.s112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rice P. A., Schachter J. Pathogenesis of pelvic inflammatory disease. What are the questions? JAMA. 1991 Nov 13;266(18):2587–2593. [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schoolnik G. K., Buchanan T. M., Holmes K. K. Gonococci causing disseminated gonococcal infection are resistant to the bactericidal action of normal human sera. J Clin Invest. 1976 Nov;58(5):1163–1173. doi: 10.1172/JCI108569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. So M., Dallas W. S., Falkow S. Characterization of an Escherichia coli plasmid encoding for synthesis of heat-labile toxin: molecular cloning of the toxin determinant. Infect Immun. 1978 Aug;21(2):405–411. doi: 10.1128/iai.21.2.405-411.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sweet R. L., Blankfort-Doyle M., Robbie M. O., Schacter J. The occurrence of chlamydial and gonococcal salpingitis during the menstrual cycle. JAMA. 1986 Apr 18;255(15):2062–2064. [PubMed] [Google Scholar]
  20. Washington A. E., Cates W., Jr, Zaidi A. A. Hospitalizations for pelvic inflammatory disease. Epidemiology and trends in the United States, 1975 to 1981. JAMA. 1984 May 18;251(19):2529–2533. doi: 10.1001/jama.251.19.2529. [DOI] [PubMed] [Google Scholar]
  21. West S. E., Clark V. L. Genetic loci and linkage associations in Neisseria gonorrhoeae and Neisseria meningitidis. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S92–103. doi: 10.1128/cmr.2.suppl.s92. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES