Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2136–2144. doi: 10.1128/iai.65.6.2136-2144.1997

Effects of adenosine on the functions of circulating polymorphonuclear leukocytes during hyperdynamic endotoxemia.

M Thiel 1, K Holzer 1, U Kreimeier 1, S Moritz 1, K Peter 1, K Messmer 1
PMCID: PMC175295  PMID: 9169743

Abstract

Endotoxin-activated polymorphonuclear leukocytes (PMNL) adhere to the vascular endothelium and cause damage by the release of toxic superoxide anions (O2-). Because adenosine is a potent inhibitor of PMNL in vitro, the present study investigates the effects of this nucleoside on the functions of circulating PMNL in a standardized porcine model of hyperdynamic endotoxemia. Ten anesthesized pigs received an intravenous (i.v.) 330-min infusion of endotoxin (5 microg/kg of body weight per h). Another 10 pigs were also infused with endotoxin plus adenosine (150 microg/kg/min [i.v.]); this treatment was begun 30 min prior to the beginning of endotoxin treatment. Control groups (five animals per group) received either adenosine or physiological saline. Infusion of endotoxin caused severe neutropenia, shedding of L-selectin, upregulation of beta2-integrins, increased binding of C3-coated zymosan particles, and subsequent phagocytosis by PMNL. While phagocytosis-induced production of oxygen radicals appeared to decrease, extracellular release of superoxide anions was strongly enhanced. Infusion of adenosine during endotoxemia had no effect on neutropenia, expression of adhesion molecules, C3-induced adhesion, phagocytosis, or intracellular production of oxygen radicals, whereas extracellular release of O2- was strongly inhibited. Thus, i.v. infusion of adenosine during endotoxemia could be useful in protecting from O2(-)-mediated tissue injury without compromising the bactericidal mechanisms of PMNL.

Full Text

The Full Text of this article is available as a PDF (205.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson T., Fällman M., Lew D. P., Stendahl O. Does protein kinase C control receptor-mediated phagocytosis in human neutrophils? FEBS Lett. 1988 Nov 7;239(2):371–375. doi: 10.1016/0014-5793(88)80954-2. [DOI] [PubMed] [Google Scholar]
  2. Briheim G., Stendahl O., Dahlgren C. Intra- and extracellular events in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun. 1984 Jul;45(1):1–5. doi: 10.1128/iai.45.1.1-5.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHN Z. A., MORSE S. I. Functional and metabolic properties of polymorphonuclear leucocytes. II. The influence of a lipopolysaccharide endotoxin. J Exp Med. 1960 May 1;111:689–704. doi: 10.1084/jem.111.5.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cronstein B. N., Kubersky S. M., Weissmann G., Hirschhorn R. Engagement of adenosine receptors inhibits hydrogen peroxide (H2O2-) release by activated human neutrophils. Clin Immunol Immunopathol. 1987 Jan;42(1):76–85. doi: 10.1016/0090-1229(87)90174-7. [DOI] [PubMed] [Google Scholar]
  5. Cronstein B. N., Levin R. I., Belanoff J., Weissmann G., Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986 Sep;78(3):760–770. doi: 10.1172/JCI112638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cronstein B. N., Levin R. I., Philips M., Hirschhorn R., Abramson S. B., Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol. 1992 Apr 1;148(7):2201–2206. [PubMed] [Google Scholar]
  7. Cronstein B. N., Rosenstein E. D., Kramer S. B., Weissmann G., Hirschhorn R. Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol. 1985 Aug;135(2):1366–1371. [PubMed] [Google Scholar]
  8. Dahlgren C., Aniansson H., Magnusson K. E. Pattern of formylmethionyl-leucyl-phenylalanine-induced luminol- and lucigenin-dependent chemiluminescence in human neutrophils. Infect Immun. 1985 Jan;47(1):326–328. doi: 10.1128/iai.47.1.326-328.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dahlgren C., Stendahl O. Role of myeloperoxidase in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun. 1983 Feb;39(2):736–741. doi: 10.1128/iai.39.2.736-741.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Follin P., Dahlgren C. Phagocytosis by lipopolysaccharide-primed human neutrophils is associated with increased extracellular release of reactive oxygen metabolites. Inflammation. 1992 Apr;16(2):83–91. doi: 10.1007/BF00918949. [DOI] [PubMed] [Google Scholar]
  11. Forehand J. R., Pabst M. J., Phillips W. A., Johnston R. B., Jr Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium. J Clin Invest. 1989 Jan;83(1):74–83. doi: 10.1172/JCI113887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gunther G. R., Herring M. B. Inhibition of neutrophil superoxide production by adenosine released from vascular endothelial cells. Ann Vasc Surg. 1991 Jul;5(4):325–330. doi: 10.1007/BF02015292. [DOI] [PubMed] [Google Scholar]
  13. Gyllenhammar H. Effects of extracellular pH on neutrophil superoxide anion production, and chemiluminescence augmented with luminol, lucigenin or DMNH. J Clin Lab Immunol. 1989 Feb;28(2):97–102. [PubMed] [Google Scholar]
  14. Holzer K., Thiel M., Moritz S., Kreimeier U., Messmer K. Expression of adhesion molecules on circulating PMN during hyperdynamic endotoxemia. J Appl Physiol (1985) 1996 Jul;81(1):341–348. doi: 10.1152/jappl.1996.81.1.341. [DOI] [PubMed] [Google Scholar]
  15. Lew D. P., Andersson T., Hed J., Di Virgilio F., Pozzan T., Stendahl O. Ca2+-dependent and Ca2+-independent phagocytosis in human neutrophils. Nature. 1985 Jun 6;315(6019):509–511. doi: 10.1038/315509a0. [DOI] [PubMed] [Google Scholar]
  16. Mills E. L., Thompson T., Björkstén B., Filipovich D., Quie P. G. The chemiluminescence response and bactericidal activity of polymorphonuclear neutrophils from newborns and their mothers. Pediatrics. 1979 Mar;63(3):429–434. [PubMed] [Google Scholar]
  17. Möser G. H., Schrader J., Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989 Apr;256(4 Pt 1):C799–C806. doi: 10.1152/ajpcell.1989.256.4.C799. [DOI] [PubMed] [Google Scholar]
  18. Müller C. E., Scior T. Adenosine receptors and their modulators. Pharm Acta Helv. 1993 Sep;68(2):77–111. doi: 10.1016/0031-6865(93)90012-u. [DOI] [PubMed] [Google Scholar]
  19. Newman S. L., Mikus L. K. Deposition of C3b and iC3b onto particulate activators of the human complement system. Quantitation with monoclonal antibodies to human C3. J Exp Med. 1985 Jun 1;161(6):1414–1431. doi: 10.1084/jem.161.6.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nishida Y., Honda Z., Miyamoto T. Suppression of human polymorphonuclear leukocyte phagocytosis by adenosine analogs. Inflammation. 1987 Sep;11(3):365–369. doi: 10.1007/BF00915840. [DOI] [PubMed] [Google Scholar]
  21. Noah R. M., Jais M. R., Noh L. M. Comparison of three different methods in the assessment of neutrophil function. Med J Malaysia. 1995 Jun;50(2):136–140. [PubMed] [Google Scholar]
  22. Ontyd J., Schrader J. Measurement of adenosine, inosine, and hypoxanthine in human plasma. J Chromatogr. 1984 May 11;307(2):404–409. doi: 10.1016/s0378-4347(00)84113-4. [DOI] [PubMed] [Google Scholar]
  23. Richter J. Effect of adenosine analogues and cAMP-raising agents on TNF-, GM-CSF-, and chemotactic peptide-induced degranulation in single adherent neutrophils. J Leukoc Biol. 1992 Mar;51(3):270–275. doi: 10.1002/jlb.51.3.270. [DOI] [PubMed] [Google Scholar]
  24. Smith R. J., Iden S. S., Bowman B. J. Activation of the human neutrophil respiratory burst with zymosan-activated serum. Biochem Biophys Res Commun. 1984 Jun 15;121(2):695–701. doi: 10.1016/0006-291x(84)90237-7. [DOI] [PubMed] [Google Scholar]
  25. Thiel M., Bardenheuer H. Regulation of oxygen radical production of human polymorphonuclear leukocytes by adenosine: the role of calcium. Pflugers Arch. 1992 Apr;420(5-6):522–528. doi: 10.1007/BF00374628. [DOI] [PubMed] [Google Scholar]
  26. Thiel M., Chambers J. D., Chouker A., Fischer S., Zourelidis C., Bardenheuer H. J., Arfors K. E., Peter K. Effect of adenosine on the expression of beta(2) integrins and L-selectin of human polymorphonuclear leukocytes in vitro. J Leukoc Biol. 1996 May;59(5):671–682. doi: 10.1002/jlb.59.5.671. [DOI] [PubMed] [Google Scholar]
  27. Thiel M., Chouker A. Acting via A2 receptors, adenosine inhibits the production of tumor necrosis factor-alpha of endotoxin-stimulated human polymorphonuclear leukocytes. J Lab Clin Med. 1995 Sep;126(3):275–282. [PubMed] [Google Scholar]
  28. Witthaut R., Farhood A., Smith C. W., Jaeschke H. Complement and tumor necrosis factor-alpha contribute to Mac-1 (CD11b/CD18) up-regulation and systemic neutrophil activation during endotoxemia in vivo. J Leukoc Biol. 1994 Jan;55(1):105–111. doi: 10.1002/jlb.55.1.105. [DOI] [PubMed] [Google Scholar]
  29. Zalavary S., Stendahl O., Bengtsson T. The role of cyclic AMP, calcium and filamentous actin in adenosine modulation of Fc receptor-mediated phagocytosis in human neutrophils. Biochim Biophys Acta. 1994 Jun 30;1222(2):249–256. doi: 10.1016/0167-4889(94)90176-7. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES