Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2160–2167. doi: 10.1128/iai.65.6.2160-2167.1997

Effect of anticoagulants on binding and neutralization of lipopolysaccharide by the peptide immunoglobulin conjugate CAP18(106-138)-immunoglobulin G in whole blood.

M Ogata 1, M F Fletcher 1, M Kloczewiak 1, P M Loiselle 1, E M Zanzot 1, M W Vermeulen 1, H S Warren 1
PMCID: PMC175298  PMID: 9169746

Abstract

The 18-kDa cationic protein CAP18 is an antimicrobial protein isolated from rabbit granulocytes that binds lipopolysaccharide (LPS) and inhibits many of its biological activities. We covalently coupled a synthetic peptide representing amino acids 106 to 138 of CAP18 to human immunoglobulin G (IgG) by using the heterobifunctional linker N-succinimidyl-3-(2-pyridyidithio)propionate. The ability of CAP18(106-138)-IgG to bind and neutralize LPS in whole blood in the presence and absence of anticoagulants was studied. Both CAP18(106-138) and CAP18(106-138)-IgG significantly suppressed LPS-induced tumor necrosis factor (TNF) production in whole blood in the absence of anticoagulants. EDTA potentiated the ability of CAP18(106-138) and CAP18(106-138)-IgG to decrease LPS-induced TNF production in a dose-dependent manner. In contrast, heparin inhibited the ability of CAP18(106-138) and CAP18(106-138)-IgG to suppress LPS-induced TNF production. EDTA also enhanced LPS capture in a fluid-phase binding assay that utilizes magnetic anti-IgG beads to capture CAP18(106-138)-IgG (and bound [3H]LPS) in whole blood. In contrast, heparin inhibited the binding dose dependently. We conclude that CAP18(106-138)-IgG binds to and neutralizes LPS in whole blood in the absence of anticoagulants. Further studies of its protective efficacy in animal models are warranted. Caution should be used in interpreting assays that measure the binding and neutralization of LPS in whole blood in the presence of calcium-binding anticoagulants or heparin.

Full Text

The Full Text of this article is available as a PDF (281.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Khabar K. S., Armstrong J. A., Ho M. Type I interferons (IFN-alpha and -beta) suppress cytotoxin (tumor necrosis factor-alpha and lymphotoxin) production by mitogen-stimulated human peripheral blood mononuclear cell. J Leukoc Biol. 1992 Aug;52(2):165–172. doi: 10.1002/jlb.52.2.165. [DOI] [PubMed] [Google Scholar]
  2. Ammons W. S., Kohn F. R., Kung A. H. Protective effects of an N-terminal fragment of bactericidal/permeability-increasing protein in rodent models of gram-negative sepsis: role of bactericidal properties. J Infect Dis. 1994 Dec;170(6):1473–1482. doi: 10.1093/infdis/170.6.1473. [DOI] [PubMed] [Google Scholar]
  3. Arditi M., Zhou J., Huang S. H., Luckett P. M., Marra M. N., Kim K. S. Bactericidal/permeability-increasing protein protects vascular endothelial cells from lipopolysaccharide-induced activation and injury. Infect Immun. 1994 Sep;62(9):3930–3936. doi: 10.1128/iai.62.9.3930-3936.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cannon J. G., van der Meer J. W., Kwiatkowski D., Endres S., Lonnemann G., Burke J. F., Dinarello C. A. Interleukin-1 beta in human plasma: optimization of blood collection, plasma extraction, and radioimmunoassay methods. Lymphokine Res. 1988 Winter;7(4):457–467. [PubMed] [Google Scholar]
  5. Carlsson J., Drevin H., Axén R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J. 1978 Sep 1;173(3):723–737. doi: 10.1042/bj1730723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cavaillon J. M., Fitting C., Haeffner-Cavaillon N., Kirsch S. J., Warren H. S. Cytokine response by monocytes and macrophages to free and lipoprotein-bound lipopolysaccharide. Infect Immun. 1990 Jul;58(7):2375–2382. doi: 10.1128/iai.58.7.2375-2382.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elsbach P., Weiss J., Franson R. C., Beckerdite-Quagliata S., Schneider A., Harris L. Separation and purification of a potent bactericidal/permeability-increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes. Observations on their relationship. J Biol Chem. 1979 Nov 10;254(21):11000–11009. [PubMed] [Google Scholar]
  8. Espevik T., Nissen-Meyer J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods. 1986 Dec 4;95(1):99–105. doi: 10.1016/0022-1759(86)90322-4. [DOI] [PubMed] [Google Scholar]
  9. Fletcher M. A., Kloczewiak M. A., Loiselle P. M., Ogata M., Vermeulen M. W., Zanzot E. M., Warren H. S. A novel peptide-IgG conjugate, CAP18(106-138)-IgG, that binds and neutralizes endotoxin and kills gram-negative bacteria. J Infect Dis. 1997 Mar;175(3):621–632. doi: 10.1093/infdis/175.3.621. [DOI] [PubMed] [Google Scholar]
  10. Gallay P., Heumann D., Le Roy D., Barras C., Glauser M. P. Lipopolysaccharide-binding protein as a major plasma protein responsible for endotoxemic shock. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9935–9938. doi: 10.1073/pnas.90.21.9935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helinski E. H., Bielat K. L., Ovak G. M., Pauly J. L. Long-term cultivation of functional human macrophages in Teflon dishes with serum-free media. J Leukoc Biol. 1988 Aug;44(2):111–121. doi: 10.1002/jlb.44.2.111. [DOI] [PubMed] [Google Scholar]
  12. Hirata M., Shimomura Y., Yoshida M., Morgan J. G., Palings I., Wilson D., Yen M. H., Wright S. C., Larrick J. W. Characterization of a rabbit cationic protein (CAP18) with lipopolysaccharide-inhibitory activity. Infect Immun. 1994 Apr;62(4):1421–1426. doi: 10.1128/iai.62.4.1421-1426.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoess A., Watson S., Siber G. R., Liddington R. Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti-LPS factor, at 1.5 A resolution. EMBO J. 1993 Sep;12(9):3351–3356. doi: 10.1002/j.1460-2075.1993.tb06008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kloczewiak M., Black K. M., Loiselle P., Cavaillon J. M., Wainwright N., Warren H. S. Synthetic peptides that mimic the binding site of horseshoe crab antilipopolysaccharide factor. J Infect Dis. 1994 Dec;170(6):1490–1497. doi: 10.1093/infdis/170.6.1490. [DOI] [PubMed] [Google Scholar]
  15. Kohn F. R., Ammons W. S., Horwitz A., Grinna L., Theofan G., Weickmann J., Kung A. H. Protective effect of a recombinant amino-terminal fragment of bactericidal/permeability-increasing protein in experimental endotoxemia. J Infect Dis. 1993 Nov;168(5):1307–1310. doi: 10.1093/infdis/168.5.1307. [DOI] [PubMed] [Google Scholar]
  16. Larrick J. W., Hirata M., Balint R. F., Lee J., Zhong J., Wright S. C. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995 Apr;63(4):1291–1297. doi: 10.1128/iai.63.4.1291-1297.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Larrick J. W., Hirata M., Shimomoura Y., Yoshida M., Zheng H., Zhong J., Wright S. C. Antimicrobial activity of rabbit CAP18-derived peptides. Antimicrob Agents Chemother. 1993 Dec;37(12):2534–2539. doi: 10.1128/aac.37.12.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larrick J. W., Hirata M., Zheng H., Zhong J., Bolin D., Cavaillon J. M., Warren H. S., Wright S. C. A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. J Immunol. 1994 Jan 1;152(1):231–240. [PubMed] [Google Scholar]
  19. Little R. G., Kelner D. N., Lim E., Burke D. J., Conlon P. J. Functional domains of recombinant bactericidal/permeability increasing protein (rBPI23). J Biol Chem. 1994 Jan 21;269(3):1865–1872. [PubMed] [Google Scholar]
  20. Munford R. S., Hall C. L., Lipton J. M., Dietschy J. M. Biological activity, lipoprotein-binding behavior, and in vivo disposition of extracted and native forms of Salmonella typhimurium lipopolysaccharides. J Clin Invest. 1982 Oct;70(4):877–888. doi: 10.1172/JCI110684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nerad J. L., Griffiths J. K., Van der Meer J. W., Endres S., Poutsiaka D. D., Keusch G. T., Bennish M., Salam M. A., Dinarello C. A., Cannon J. G. Interleukin-1 beta (IL-1 beta), IL-1 receptor antagonist, and TNF alpha production in whole blood. J Leukoc Biol. 1992 Dec;52(6):687–692. doi: 10.1002/jlb.52.6.687. [DOI] [PubMed] [Google Scholar]
  22. Ooi C. E., Weiss J., Elsbach P., Frangione B., Mannion B. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem. 1987 Nov 5;262(31):14891–14894. [PubMed] [Google Scholar]
  23. Piers K. L., Brown M. H., Hancock R. E. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother. 1994 Oct;38(10):2311–2316. doi: 10.1128/aac.38.10.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prins J. M., Kuijper E. J., Mevissen M. L., Speelman P., van Deventer S. J. Release of tumor necrosis factor alpha and interleukin 6 during antibiotic killing of Escherichia coli in whole blood: influence of antibiotic class, antibiotic concentration, and presence of septic serum. Infect Immun. 1995 Jun;63(6):2236–2242. doi: 10.1128/iai.63.6.2236-2242.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Riches P., Gooding R., Millar B. C., Rowbottom A. W. Influence of collection and separation of blood samples on plasma IL-1, IL-6 and TNF-alpha concentrations. J Immunol Methods. 1992 Aug 30;153(1-2):125–131. doi: 10.1016/0022-1759(92)90314-j. [DOI] [PubMed] [Google Scholar]
  26. Romeo D., Girard A., Rothfield L. Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid. J Mol Biol. 1970 Nov 14;53(3):475–490. doi: 10.1016/0022-2836(70)90078-1. [DOI] [PubMed] [Google Scholar]
  27. Rudbach J. A., Akiya F. I., Elin R. J., Hochstein H. D., Luoma M. K., Milner E. C., Milner K. C., Thomas K. R. Preparation and properties of a national reference endotoxin. J Clin Microbiol. 1976 Jan;3(1):21–25. doi: 10.1128/jcm.3.1.21-25.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  29. Siber G. R., Kania S. A., Warren H. S. Cross-reactivity of rabbit antibodies to lipopolysaccharides of Escherichia coli J5 and other gram-negative bacteria. J Infect Dis. 1985 Nov;152(5):954–964. doi: 10.1093/infdis/152.5.954. [DOI] [PubMed] [Google Scholar]
  30. Thavasu P. W., Longhurst S., Joel S. P., Slevin M. L., Balkwill F. R. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J Immunol Methods. 1992 Aug 30;153(1-2):115–124. doi: 10.1016/0022-1759(92)90313-i. [DOI] [PubMed] [Google Scholar]
  31. Tobias P. S., Mathison J., Mintz D., Lee J. D., Kravchenko V., Kato K., Pugin J., Ulevitch R. J. Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. Am J Respir Cell Mol Biol. 1992 Sep;7(3):239–245. doi: 10.1165/ajrcmb/7.3.239. [DOI] [PubMed] [Google Scholar]
  32. Tobias P. S., Soldau K., Ulevitch R. J. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med. 1986 Sep 1;164(3):777–793. doi: 10.1084/jem.164.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tossi A., Scocchi M., Skerlavaj B., Gennaro R. Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 1994 Feb 14;339(1-2):108–112. doi: 10.1016/0014-5793(94)80395-1. [DOI] [PubMed] [Google Scholar]
  34. Ulevitch R. J., Johnston A. R. The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum. J Clin Invest. 1978 Dec;62(6):1313–1324. doi: 10.1172/JCI109252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ulevitch R. J., Johnston A. R., Weinstein D. B. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest. 1979 Nov;64(5):1516–1524. doi: 10.1172/JCI109610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ulevitch R. J. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993;53:267–289. doi: 10.1016/s0065-2776(08)60502-7. [DOI] [PubMed] [Google Scholar]
  37. VanderMeer T. J., Menconi M. J., Zhuang J., Wang H., Murtaugh R., Bouza C., Stevens P., Fink M. P. Protective effects of a novel 32-amino acid C-terminal fragment of CAP18 in endotoxemic pigs. Surgery. 1995 Jun;117(6):656–662. doi: 10.1016/s0039-6060(95)80009-3. [DOI] [PubMed] [Google Scholar]
  38. Warren H. S., Amato S. F., Fitting C., Black K. M., Loiselle P. M., Pasternack M. S., Cavaillon J. M. Assessment of ability of murine and human anti-lipid A monoclonal antibodies to bind and neutralize lipopolysaccharide. J Exp Med. 1993 Jan 1;177(1):89–97. doi: 10.1084/jem.177.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Warren H. S., Knights C. V., Siber G. R. Neutralization and lipoprotein binding of lipopolysaccharides in tolerant rabbit serum. J Infect Dis. 1986 Nov;154(5):784–791. doi: 10.1093/infdis/154.5.784. [DOI] [PubMed] [Google Scholar]
  40. Weiss J., Elsbach P., Shu C., Castillo J., Grinna L., Horwitz A., Theofan G. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest. 1992 Sep;90(3):1122–1130. doi: 10.1172/JCI115930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson B. M., Severn A., Rapson N. T., Chana J., Hopkins P. A convenient human whole blood culture system for studying the regulation of tumour necrosis factor release by bacterial lipopolysaccharide. J Immunol Methods. 1991 Jun 3;139(2):233–240. doi: 10.1016/0022-1759(91)90193-j. [DOI] [PubMed] [Google Scholar]
  42. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  43. Wurfel M. M., Kunitake S. T., Lichenstein H., Kane J. P., Wright S. D. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med. 1994 Sep 1;180(3):1025–1035. doi: 10.1084/jem.180.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. von der Möhlen M. A., Kimmings A. N., Wedel N. I., Mevissen M. L., Jansen J., Friedmann N., Lorenz T. J., Nelson B. J., White M. L., Bauer R. Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J Infect Dis. 1995 Jul;172(1):144–151. doi: 10.1093/infdis/172.1.144. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES