Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2168–2174. doi: 10.1128/iai.65.6.2168-2174.1997

Vaccine- and antigen-dependent type 1 and type 2 cytokine induction after primary vaccination of infants with whole-cell or acellular pertussis vaccines.

C M Ausiello 1, F Urbani 1, A la Sala 1, R Lande 1, A Cassone 1
PMCID: PMC175299  PMID: 9169747

Abstract

Cytokine profiles were examined 1 month after primary vaccination of infants with a whole-cell pertussis vaccine (wP) (Connaught) or either of two acellular pertussis vaccines, aP-Chiron Biocine (aP-CB) or aP-SmithKline Beecham (aP-SB), each combined with diphtheria-tetanus toxoids (DT), in Bordetella pertussis antigen-stimulated or unstimulated peripheral blood mononuclear cells (PBMC). Pertussis toxin (PT), filamentous hemagglutinin (FHA), and pertactin (PRN) were used as antigens, and the children were defined as responsive when their PBMC proliferated in response to these antigens. The controls were either children who received only DT or children who received pertussis vaccine but whose PBMC did not proliferate upon stimulation with B. pertussis antigens (unresponsive children). Antigen-stimulated PBMC of responsive wP recipients were characterized by an elevated production of T-helper-cell type 1 cytokines gamma interferon (IFN-gamma) and interleukin 2 (IL-2), low to minimal production of IL-5, and no production of IL-4. The PBMC of aP vaccine-responsive recipients showed, in addition to the elevated IFN-gamma production, a consistent, antigen-dependent production of type 2 cytokines (IL-4 and IL-5), with PRN being the most and PT being the least effective antigen. Type 2 cytokine induction was more pronounced in aP-SB than in aP-CB recipients, as shown by the presence of IL-4 mRNA transcripts and higher IL-5 production in the former (161.6 +/- 36 and 47.9 +/- 44 pg/ml [mean +/- standard error for five subjects each], respectively, after PRN stimulation). Appreciable, antigen-unstimulated (constitutive) IFN-gamma production was also detected in PBMC cultures of all vaccinees. However, this spontaneous IFN-gamma production was, in most vaccinees, significantly lower than the antigen-driven cytokine production. In contrast, no constitutive type 2 cytokine production was ever observed in any vaccine group. PBMC from the two control groups (either DT or pertussis vaccine recipients) did not show any type 2 cytokine production, while IFN-gamma production was comparable in both antigen-stimulated and unstimulated conditions. Absence of type 2 cytokines and low levels of constitutive IFN-gamma production were also seen in prevaccination children. Thus, pertussis vaccines induce in infants a basically type 1 cytokine profile, which is, however, accompanied by some production of type 2 cytokines. The latter are more expressed by aP-SB than by aP-CB recipients, and with PRN than with other antigens, and they are minimally expressed in wP recipients and with PT as antigen. Our data also highlight a constitutive IFN-gamma production in infancy, which might reflect natural immunization and/or the burden of concomitant vaccinations and which may have an impact on T-helper-cell cytokine pattern polarization consequent to pertussis vaccination.

Full Text

The Full Text of this article is available as a PDF (522.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ausiello C. M., Urbani F., Gessani S., Spagnoli G. C., Gomez M. J., Cassone A. Cytokine gene expression in human peripheral blood mononuclear cells stimulated by mannoprotein constituents from Candida albicans. Infect Immun. 1993 Oct;61(10):4105–4111. doi: 10.1128/iai.61.10.4105-4111.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ausiello C. M., Urbani F., la Sala A., Funaro A., Malavasi F. CD38 ligation induces discrete cytokine mRNA expression in human cultured lymphocytes. Eur J Immunol. 1995 May;25(5):1477–1480. doi: 10.1002/eji.1830250554. [DOI] [PubMed] [Google Scholar]
  3. Ausiello C. M., la Sala A., Ramoni C., Urbani F., Funaro A., Malavasi F. Secretion of IFN-gamma, IL-6, granulocyte-macrophage colony-stimulating factor and IL-10 cytokines after activation of human purified T lymphocytes upon CD38 ligation. Cell Immunol. 1996 Nov 1;173(2):192–197. doi: 10.1006/cimm.1996.0267. [DOI] [PubMed] [Google Scholar]
  4. Bancroft A. J., Else K. J., Grencis R. K. Low-level infection with Trichuris muris significantly affects the polarization of the CD4 response. Eur J Immunol. 1994 Dec;24(12):3113–3118. doi: 10.1002/eji.1830241230. [DOI] [PubMed] [Google Scholar]
  5. Barnard A., Mahon B. P., Watkins J., Redhead K., Mills K. H. Th1/Th2 cell dichotomy in acquired immunity to Bordetella pertussis: variables in the in vivo priming and in vitro cytokine detection techniques affect the classification of T-cell subsets as Th1, Th2 or Th0. Immunology. 1996 Mar;87(3):372–380. doi: 10.1046/j.1365-2567.1996.497560.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bomford R. The comparative selectivity of adjuvants for humoral and cell-mediated immunity. II. Effect on delayed-type hypersensitivity in the mouse and guinea pig, and cell-mediated immunity to tumour antigens in the mouse of Freund's incomplete and complete adjuvants, alhydrogel, Corynebacterium parvum, Bordetella pertussis, muramyl dipeptide and saponin. Clin Exp Immunol. 1980 Feb;39(2):435–441. [PMC free article] [PubMed] [Google Scholar]
  7. Bromberg K., Tannis G., Steiner P. Detection of Bordetella pertussis associated with the alveolar macrophages of children with human immunodeficiency virus infection. Infect Immun. 1991 Dec;59(12):4715–4719. doi: 10.1128/iai.59.12.4715-4719.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cassatella M. A. The production of cytokines by polymorphonuclear neutrophils. Immunol Today. 1995 Jan;16(1):21–26. doi: 10.1016/0167-5699(95)80066-2. [DOI] [PubMed] [Google Scholar]
  9. Cassone A., Ausiello C. M., Urbani F., Lande R., Giuliano M., La Sala A., Piscitelli A., Salmaso S. Cell-mediated and antibody responses to Bordetella pertussis antigens in children vaccinated with acellular or whole-cell pertussis vaccines. The Progetto Pertosse-CMI Working Group. Arch Pediatr Adolesc Med. 1997 Mar;151(3):283–289. doi: 10.1001/archpedi.1997.02170400069013. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Ehlers S., Smith K. A. Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J Exp Med. 1991 Jan 1;173(1):25–36. doi: 10.1084/jem.173.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greco D., Salmaso S., Mastrantonio P., Giuliano M., Tozzi A. E., Anemona A., Ciofi degli Atti M. L., Giammanco A., Panei P., Blackwelder W. C. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N Engl J Med. 1996 Feb 8;334(6):341–348. doi: 10.1056/NEJM199602083340601. [DOI] [PubMed] [Google Scholar]
  13. Gustafsson L., Hallander H. O., Olin P., Reizenstein E., Storsaeter J. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med. 1996 Feb 8;334(6):349–355. doi: 10.1056/NEJM199602083340602. [DOI] [PubMed] [Google Scholar]
  14. Hazenbos W. L., van den Berg B. M., van't Wout J. W., Mooi F. R., van Furth R. Virulence factors determine attachment and ingestion of nonopsonized and opsonized Bordetella pertussis by human monocytes. Infect Immun. 1994 Nov;62(11):4818–4824. doi: 10.1128/iai.62.11.4818-4824.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hosken N. A., Shibuya K., Heath A. W., Murphy K. M., O'Garra A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J Exp Med. 1995 Nov 1;182(5):1579–1584. doi: 10.1084/jem.182.5.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaufmann S. H. Immunity to intracellular bacteria. Annu Rev Immunol. 1993;11:129–163. doi: 10.1146/annurev.iy.11.040193.001021. [DOI] [PubMed] [Google Scholar]
  17. Mahon B. P., Ryan M. S., Griffin F., Mills K. H. Interleukin-12 is produced by macrophages in response to live or killed Bordetella pertussis and enhances the efficacy of an acellular pertussis vaccine by promoting induction of Th1 cells. Infect Immun. 1996 Dec;64(12):5295–5301. doi: 10.1128/iai.64.12.5295-5301.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mencacci A., Spaccapelo R., Del Sero G., Enssle K. H., Cassone A., Bistoni F., Romani L. CD4+ T-helper-cell responses in mice with low-level Candida albicans infection. Infect Immun. 1996 Dec;64(12):4907–4914. doi: 10.1128/iai.64.12.4907-4914.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mills K. H., Barnard A., Watkins J., Redhead K. Cell-mediated immunity to Bordetella pertussis: role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect Immun. 1993 Feb;61(2):399–410. doi: 10.1128/iai.61.2.399-410.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  21. Munoz J. J., Arai H., Bergman R. K., Sadowski P. L. Biological activities of crystalline pertussigen from Bordetella pertussis. Infect Immun. 1981 Sep;33(3):820–826. doi: 10.1128/iai.33.3.820-826.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Garra A., Murphy K. Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol. 1994 Jun;6(3):458–466. doi: 10.1016/0952-7915(94)90128-7. [DOI] [PubMed] [Google Scholar]
  23. Peppoloni S., Nencioni L., Di Tommaso A., Tagliabue A., Parronchi P., Romagnani S., Rappuoli R., De Magistris M. T. Lymphokine secretion and cytotoxic activity of human CD4+ T-cell clones against Bordetella pertussis. Infect Immun. 1991 Oct;59(10):3768–3773. doi: 10.1128/iai.59.10.3768-3773.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Petersen J. W., Ibsen P. H., Hasløv K., Heron I. Proliferative responses and gamma interferon and tumor necrosis factor production by lymphocytes isolated from tracheobroncheal lymph nodes and spleen of mice aerosol infected with Bordetella pertussis. Infect Immun. 1992 Nov;60(11):4563–4570. doi: 10.1128/iai.60.11.4563-4570.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rappuoli R. Toxin inactivation and antigen stabilization: two different uses of formaldehyde. Vaccine. 1994 May;12(7):579–581. doi: 10.1016/0264-410x(94)90259-3. [DOI] [PubMed] [Google Scholar]
  26. Redhead K., Watkins J., Barnard A., Mills K. H. Effective immunization against Bordetella pertussis respiratory infection in mice is dependent on induction of cell-mediated immunity. Infect Immun. 1993 Aug;61(8):3190–3198. doi: 10.1128/iai.61.8.3190-3198.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sieling P. A., Wang X. H., Gately M. K., Oliveros J. L., McHugh T., Barnes P. F., Wolf S. F., Golkar L., Yamamura M., Yogi Y. IL-12 regulates T helper type 1 cytokine responses in human infectious disease. J Immunol. 1994 Oct 15;153(8):3639–3647. [PubMed] [Google Scholar]
  28. Taylor C. E. Cytokines as adjuvants for vaccines: antigen-specific responses differ from polyclonal responses. Infect Immun. 1995 Sep;63(9):3241–3244. doi: 10.1128/iai.63.9.3241-3244.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weinberg A. D., English M., Swain S. L. Distinct regulation of lymphokine production is found in fresh versus in vitro primed murine helper T cells. J Immunol. 1990 Mar 1;144(5):1800–1807. [PubMed] [Google Scholar]
  30. Zepp F., Knuf M., Habermehl P., Schmitt J. H., Rebsch C., Schmidtke P., Clemens R., Slaoui M. Pertussis-specific cell-mediated immunity in infants after vaccination with a tricomponent acellular pertussis vaccine. Infect Immun. 1996 Oct;64(10):4078–4084. doi: 10.1128/iai.64.10.4078-4084.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES