Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2175–2182. doi: 10.1128/iai.65.6.2175-2182.1997

Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring.

W C Van Voorhis 1, L K Barrett 1, Y T Sweeney 1, C C Kuo 1, D L Patton 1
PMCID: PMC175300  PMID: 9169748

Abstract

Chlamydia trachomatis-associated female infertility and ectopic pregnancy are caused by postinflammatory fibrosis and scarring of the upper genital tract. Scarring of the upper genital tract is associated with multiple infectious episodes with C. trachomatis. To study the immune response that occurs with multiple infections of C. trachomatis in the female upper genital tract, a Macaca nemestrina model was used. Subcutaneous pockets containing autologous salpingeal tissue implants were inoculated three times with C. trachomatis. The inflammation after three inoculations was associated with a mononuclear infiltrate dominated by CD8 T-cell lymphocytes. Perforin mRNA was induced in infected pockets, demonstrating that activated cytolytic lymphocytes were present in the lesions. Fibrosis, as evidenced by fibroblast proliferation and connective tissue deposition, was observed by the third infection. Cytokine mRNAs induced by repeated chlamydial infection included gamma interferon, interleukin-2 (IL-2), IL-6, and IL-10 mRNAs, but IL-4 mRNA was not induced. Nearly identical findings were found in macaque fallopian tubes infected in situ repeatedly with C. trachomatis, validating the subcutaneous pocket model of chlamydial salpingitis. However, it was not possible to evaluate if there was an induction of perforin mRNA in infected salpingeal tubes in situ, because there was a high basal level of perforin mRNA in these tissues. These results suggest that repeated chlamydial infection of the female upper genital tract leads to CD8 T-cell predominance, a Th1-like cytokine milieu, and these inflammatory changes are associated with progression to fibrosis associated with female infertility.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arno J. N., Ricker V. A., Batteiger B. E., Katz B. P., Caine V. A., Jones R. B. Interferon-gamma in endocervical secretions of women infected with Chlamydia trachomatis. J Infect Dis. 1990 Dec;162(6):1385–1389. doi: 10.1093/infdis/162.6.1385. [DOI] [PubMed] [Google Scholar]
  2. Beatty W. L., Byrne G. I., Morrison R. P. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3998–4002. doi: 10.1073/pnas.90.9.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckstead J. H. A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J Histochem Cytochem. 1994 Aug;42(8):1127–1134. doi: 10.1177/42.8.8027531. [DOI] [PubMed] [Google Scholar]
  4. Del Prete G., De Carli M., Almerigogna F., Giudizi M. G., Biagiotti R., Romagnani S. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol. 1993 Jan 15;150(2):353–360. [PubMed] [Google Scholar]
  5. Grayston J. T., Wang S. P., Yeh L. J., Kuo C. C. Importance of reinfection in the pathogenesis of trachoma. Rev Infect Dis. 1985 Nov-Dec;7(6):717–725. doi: 10.1093/clinids/7.6.717. [DOI] [PubMed] [Google Scholar]
  6. Hameed A., Fox W. M., Kurman R. J., Hruban R. H., Podack E. R. Perforin expression in endometrium during the menstrual cycle. Int J Gynecol Pathol. 1995 Apr;14(2):143–150. doi: 10.1097/00004347-199504000-00008. [DOI] [PubMed] [Google Scholar]
  7. Kovacs E. J. Fibrogenic cytokines: the role of immune mediators in the development of scar tissue. Immunol Today. 1991 Jan;12(1):17–23. doi: 10.1016/0167-5699(91)90107-5. [DOI] [PubMed] [Google Scholar]
  8. Liles W. C., Van Voorhis W. C. Review: nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J Infect Dis. 1995 Dec;172(6):1573–1580. doi: 10.1093/infdis/172.6.1573. [DOI] [PubMed] [Google Scholar]
  9. Liu C. C., Walsh C. M., Young J. D. Perforin: structure and function. Immunol Today. 1995 Apr;16(4):194–201. doi: 10.1016/0167-5699(95)80121-9. [DOI] [PubMed] [Google Scholar]
  10. Magee D. M., Williams D. M., Smith J. G., Bleicker C. A., Grubbs B. G., Schachter J., Rank R. G. Role of CD8 T cells in primary Chlamydia infection. Infect Immun. 1995 Feb;63(2):516–521. doi: 10.1128/iai.63.2.516-521.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Magee D. M., Williams D. M., Smith J. G., Bleicker C. A., Grubbs B. G., Schachter J., Rank R. G. Role of CD8 T cells in primary Chlamydia infection. Infect Immun. 1995 Feb;63(2):516–521. doi: 10.1128/iai.63.2.516-521.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morrison R. P., Feilzer K., Tumas D. B. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun. 1995 Dec;63(12):4661–4668. doi: 10.1128/iai.63.12.4661-4668.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Patton D. L., Kuo C. C. Histopathology of Chlamydia trachomatis salpingitis after primary and repeated reinfections in the monkey subcutaneous pocket model. J Reprod Fertil. 1989 Mar;85(2):647–656. doi: 10.1530/jrf.0.0850647. [DOI] [PubMed] [Google Scholar]
  14. Patton D. L., Kuo C. C., Wang S. P., Brenner R. M., Sternfeld M. D., Morse S. A., Barnes R. C. Chlamydial infection of subcutaneous fimbrial transplants in cynomolgus and rhesus monkeys. J Infect Dis. 1987 Feb;155(2):229–235. doi: 10.1093/infdis/155.2.229. [DOI] [PubMed] [Google Scholar]
  15. Patton D. L., Kuo C. C., Wang S. P., Halbert S. A. Distal tubal obstruction induced by repeated Chlamydia trachomatis salpingeal infections in pig-tailed macaques. J Infect Dis. 1987 Jun;155(6):1292–1299. doi: 10.1093/infdis/155.6.1292. [DOI] [PubMed] [Google Scholar]
  16. Patton D. L., Wølner-Hanssen P., Cosgrove S. J., Holmes K. K. The effects of Chlamydia trachomatis on the female reproductive tract of the Macaca nemestrina after a single tubal challenge following repeated cervical inoculations. Obstet Gynecol. 1990 Oct;76(4):643–650. [PubMed] [Google Scholar]
  17. Rank R. G., Ramsey K. H., Pack E. A., Williams D. M. Effect of gamma interferon on resolution of murine chlamydial genital infection. Infect Immun. 1992 Oct;60(10):4427–4429. doi: 10.1128/iai.60.10.4427-4429.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reiner S. L., Locksley R. M. Lessons from Leishmania: a model for investigations of CD4+ subset differentiation. Infect Agents Dis. 1992 Feb;1(1):33–42. [PubMed] [Google Scholar]
  19. Romagnani S. Biology of human TH1 and TH2 cells. J Clin Immunol. 1995 May;15(3):121–129. doi: 10.1007/BF01543103. [DOI] [PubMed] [Google Scholar]
  20. Rothermel C. D., Rubin B. Y., Murray H. W. Gamma-interferon is the factor in lymphokine that activates human macrophages to inhibit intracellular Chlamydia psittaci replication. J Immunol. 1983 Nov;131(5):2542–2544. [PubMed] [Google Scholar]
  21. Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  22. Silva J. S., Morrissey P. J., Grabstein K. H., Mohler K. M., Anderson D., Reed S. G. Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med. 1992 Jan 1;175(1):169–174. doi: 10.1084/jem.175.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Starnbach M. N., Bevan M. J., Lampe M. F. Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis. J Immunol. 1994 Dec 1;153(11):5183–5189. [PubMed] [Google Scholar]
  24. Su H., Caldwell H. D. CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun. 1995 Sep;63(9):3302–3308. doi: 10.1128/iai.63.9.3302-3308.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Voorhis W. C., Barrett L. K., Sweeney Y. T., Kuo C. C., Patton D. L. Analysis of lymphocyte phenotype and cytokine activity in the inflammatory infiltrates of the upper genital tract of female macaques infected with Chlamydia trachomatis. J Infect Dis. 1996 Sep;174(3):647–650. doi: 10.1093/infdis/174.3.647. [DOI] [PubMed] [Google Scholar]
  26. Vieth M., Will A., Schröppel K., Röllinghoff M., Gessner A. Interleukin-10 inhibits antimicrobial activity against Leishmania major in murine macrophages. Scand J Immunol. 1994 Oct;40(4):403–409. doi: 10.1111/j.1365-3083.1994.tb03481.x. [DOI] [PubMed] [Google Scholar]
  27. Washington A. E., Johnson R. E., Sanders L. L., Jr Chlamydia trachomatis infections in the United States. What are they costing us? JAMA. 1987 Apr 17;257(15):2070–2072. [PubMed] [Google Scholar]
  28. Weström L., Joesoef R., Reynolds G., Hagdu A., Thompson S. E. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis. 1992 Jul-Aug;19(4):185–192. [PubMed] [Google Scholar]
  29. Williams N. S., Engelhard V. H. Identification of a population of CD4+ CTL that utilizes a perforin- rather than a Fas ligand-dependent cytotoxic mechanism. J Immunol. 1996 Jan 1;156(1):153–159. [PubMed] [Google Scholar]
  30. de Vries J. E. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med. 1995 Oct;27(5):537–541. doi: 10.3109/07853899509002465. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES