Abstract
Several genes involved in the lipopolysaccharide (LPS) biosynthetic pathway have been shown to affect the expression or activity of Escherichia coli hemolysin (Hly), a secreted cytotoxin that is the prototype of the RTX family of toxins. To further study this relationship, E. coli K-12 strains harboring mutations in the LPS biosynthetic genes rfaS, rfaQ, rfaJ, rfaP, and rfaC were transformed with a recombinant plasmid harboring the hlyCABD operon and examined for their effects on extracellular expression and hemolytic activity. A mutation in rfaC that affected both extracellular expression and activity of Hly was studied in greater detail. This mutation led to a growth-phase-dependent decrease up to 16-fold in the steady-state level of extracellular HlyA, although transcription and secretion of HlyA were decreased no more than 2-fold. Specific hemolytic activity in toxin produced from the rfaC mutant strain was significantly reduced, in a growth-phase-dependent manner. With the rfaC gene supplied in trans, both the decreased expression and activity of Hly were restored to wild-type levels. Hly from the rfaC mutant strain exhibited much slower kinetics of hemolysis, a more rapid rate of decay of activity, and greater formation of apparently inactive HlyA-containing aggregates in culture supernatants than was exhibited in the wild-type strain. A model is proposed for a physical interaction between LPS and Hly in which LPS with intact inner core participates in forming or maintaining an active conformation of Hly and helps to protect it from aggregation or degradation.
Full Text
The Full Text of this article is available as a PDF (268.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey M. J., Koronakis V., Schmoll T., Hughes C. Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol. 1992 Apr;6(8):1003–1012. doi: 10.1111/j.1365-2958.1992.tb02166.x. [DOI] [PubMed] [Google Scholar]
- Bauer M. E., Welch R. A. Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 1996 Jan;64(1):167–175. doi: 10.1128/iai.64.1.167-175.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohach G. A., Snyder I. S. Chemical and immunological analysis of the complex structure of Escherichia coli alpha-hemolysin. J Bacteriol. 1985 Dec;164(3):1071–1080. doi: 10.1128/jb.164.3.1071-1080.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohach G. A., Snyder I. S. Composition of affinity-purified alpha-hemolysin of Escherichia coli. Infect Immun. 1986 Aug;53(2):435–437. doi: 10.1128/iai.53.2.435-437.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L., Coleman W. G., Jr Cloning and characterization of the Escherichia coli K-12 rfa-2 (rfaC) gene, a gene required for lipopolysaccharide inner core synthesis. J Bacteriol. 1993 May;175(9):2534–2540. doi: 10.1128/jb.175.9.2534-2540.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emory S. A., Belasco J. G. The ompA 5' untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J Bacteriol. 1990 Aug;172(8):4472–4481. doi: 10.1128/jb.172.8.4472-4481.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadurugamuwa J. L., Beveridge T. J. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol. 1995 Jul;177(14):3998–4008. doi: 10.1128/jb.177.14.3998-4008.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klena J. D., Ashford R. S., 2nd, Schnaitman C. A. Role of Escherichia coli K-12 rfa genes and the rfp gene of Shigella dysenteriae 1 in generation of lipopolysaccharide core heterogeneity and attachment of O antigen. J Bacteriol. 1992 Nov;174(22):7297–7307. doi: 10.1128/jb.174.22.7297-7307.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klena J. D., Schnaitman C. A. Genes for TDP-rhamnose synthesis affect the pattern of lipopolysaccharide heterogeneity in Escherichia coli K-12. J Bacteriol. 1994 Jul;176(13):4003–4010. doi: 10.1128/jb.176.13.4003-4010.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leeds J. A., Welch R. A. RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol. 1996 Apr;178(7):1850–1857. doi: 10.1128/jb.178.7.1850-1857.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostolaza H., Bartolomé B., Serra J. L., de la Cruz F., Goñi F. M. Alpha-haemolysin from E. coli. Purification and self-aggregation properties. FEBS Lett. 1991 Mar 25;280(2):195–198. doi: 10.1016/0014-5793(91)80291-a. [DOI] [PubMed] [Google Scholar]
- Parker C. T., Kloser A. W., Schnaitman C. A., Stein M. A., Gottesman S., Gibson B. W. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J Bacteriol. 1992 Apr;174(8):2525–2538. doi: 10.1128/jb.174.8.2525-2538.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pradel E., Parker C. T., Schnaitman C. A. Structures of the rfaB, rfaI, rfaJ, and rfaS genes of Escherichia coli K-12 and their roles in assembly of the lipopolysaccharide core. J Bacteriol. 1992 Jul;174(14):4736–4745. doi: 10.1128/jb.174.14.4736-4745.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rennie R. P., Arbuthnott J. P. Partial characterisation of Escherichia coli haemolysin. J Med Microbiol. 1974 May;7(2):179–188. doi: 10.1099/00222615-7-2-179. [DOI] [PubMed] [Google Scholar]
- Schnaitman C. A., Klena J. D. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev. 1993 Sep;57(3):655–682. doi: 10.1128/mr.57.3.655-682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen K., Nikaido H. In vitro trimerization of OmpF porin secreted by spheroplasts of Escherichia coli. Proc Natl Acad Sci U S A. 1990 Jan;87(2):743–747. doi: 10.1073/pnas.87.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen K., Nikaido H. Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin. J Bacteriol. 1991 Jan;173(2):926–928. doi: 10.1128/jb.173.2.926-928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Short E. C., Kurtz H. J. Properties of the Hemolytic Activities of Escherichia coli. Infect Immun. 1971 May;3(5):678–687. doi: 10.1128/iai.3.5.678-687.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanley P. L., Diaz P., Bailey M. J., Gygi D., Juarez A., Hughes C. Loss of activity in the secreted form of Escherichia coli haemolysin caused by an rfaP lesion in core lipopolysaccharide assembly. Mol Microbiol. 1993 Nov;10(4):781–787. doi: 10.1111/j.1365-2958.1993.tb00948.x. [DOI] [PubMed] [Google Scholar]
- Wandersman C., Létoffé S. Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases. Mol Microbiol. 1993 Jan;7(1):141–150. doi: 10.1111/j.1365-2958.1993.tb01105.x. [DOI] [PubMed] [Google Scholar]
- Welch R. A., Bauer M. E., Kent A. D., Leeds J. A., Moayeri M., Regassa L. B., Swenson D. L. Battling against host phagocytes: the wherefore of the RTX family of toxins? Infect Agents Dis. 1995 Dec;4(4):254–272. [PubMed] [Google Scholar]
- Welch R. A., Dellinger E. P., Minshew B., Falkow S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature. 1981 Dec 17;294(5842):665–667. doi: 10.1038/294665a0. [DOI] [PubMed] [Google Scholar]