Abstract
The binding of iodinated botulinum toxin type B to nerve membranes was studied by using rat and mouse preparations. The toxin was examined both in the single-chain and in the proteolytically processed dichain form, and binding sites both in the spinal cord and in various brain regions were assayed. Rat and mouse brains possessed specific binding sites for botulinum toxin type B. The average Kd values for the various rat and mouse membrane preparations examined were 4.2 +/- 0.7 nM and 3.7 +/- 0.9 nM, respectively. The average Bmax values for the same tissue preparations were 7.3 +/- 0.7 pmol/mg of protein and 7.5 +/- 1.9 pmol/mg protein, respectively. The binding of botulinum toxin type B to rat brain membranes was not antagonized by a polyclonal antibody against the cytosolic domain of synaptotagmin 1 or by a monoclonal antibody directed against the luminal domain of synaptotagmin 1. In addition, these antibodies did not protect the mouse phrenic nerve-hemidiaphragm from toxin-induced neuromuscular blockade. Extraction of whole-brain mRNA and injection into Xenopus oocytes led to expression of binding sites for botulinum toxin. Extraction and injection of cerebellar mRNA led to expression of a higher density of binding sites. The number of binding sites was not diminished when oocytes were pretreated with antibodies against the cytosolic and luminal domains of synaptotagmin 1. These findings are likely to aid in the isolation, characterization, and reconstitution of toxin binding sites.
Full Text
The Full Text of this article is available as a PDF (260.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURGEN A. S. V., DICKENS F., ZATMAN L. J. The action of botulinum toxin on the neuro-muscular junction. J Physiol. 1949 Aug;109(1-2):10–24. doi: 10.1113/jphysiol.1949.sp004364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakry N., Kamata Y., Simpson L. L. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J Pharmacol Exp Ther. 1991 Sep;258(3):830–836. [PubMed] [Google Scholar]
- Bakry N., Kamata Y., Sorensen R., Simpson L. L. Tetanus toxin and neuronal membranes: the relationship between binding and toxicity. J Pharmacol Exp Ther. 1991 Aug;258(2):613–619. [PubMed] [Google Scholar]
- Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Südhof T. C., Jahn R., Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994 Jan 21;269(3):1617–1620. [PubMed] [Google Scholar]
- Black J. D., Dolly J. O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol. 1986 Aug;103(2):521–534. doi: 10.1083/jcb.103.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black J. D., Dolly J. O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol. 1986 Aug;103(2):535–544. doi: 10.1083/jcb.103.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blasi J., Chapman E. R., Link E., Binz T., Yamasaki S., De Camilli P., Südhof T. C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993 Sep 9;365(6442):160–163. doi: 10.1038/365160a0. [DOI] [PubMed] [Google Scholar]
- Blasi J., Chapman E. R., Yamasaki S., Binz T., Niemann H., Jahn R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 1993 Dec;12(12):4821–4828. doi: 10.1002/j.1460-2075.1993.tb06171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coffield J. A., Considine R. V., Jeyapaul J., Maksymowych A. B., Zhang R. D., Simpson L. L. The role of transglutaminase in the mechanism of action of tetanus toxin. J Biol Chem. 1994 Sep 30;269(39):24454–24458. [PubMed] [Google Scholar]
- Evans D. M., Williams R. S., Shone C. C., Hambleton P., Melling J., Dolly J. O. Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes. Eur J Biochem. 1986 Jan 15;154(2):409–416. doi: 10.1111/j.1432-1033.1986.tb09413.x. [DOI] [PubMed] [Google Scholar]
- Habermann E., Dreyer F. Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol. 1986;129:93–179. doi: 10.1007/978-3-642-71399-6_2. [DOI] [PubMed] [Google Scholar]
- Kozaki S. Interaction of botulinum type A, B and E derivative toxins with synaptosomes of rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1979 Jul;308(1):67–70. doi: 10.1007/BF00499721. [DOI] [PubMed] [Google Scholar]
- Montecucco C., Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994 Jul;13(1):1–8. doi: 10.1111/j.1365-2958.1994.tb00396.x. [DOI] [PubMed] [Google Scholar]
- Mundigl O., Verderio C., Krazewski K., De Camilli P., Matteoli M. A radioimmunoassay to monitor synaptic activity in hippocampal neurons in vitro. Eur J Cell Biol. 1995 Mar;66(3):246–256. [PubMed] [Google Scholar]
- Nishiki T., Kamata Y., Nemoto Y., Omori A., Ito T., Takahashi M., Kozaki S. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem. 1994 Apr 8;269(14):10498–10503. [PubMed] [Google Scholar]
- Nishiki T., Ogasawara J., Kamata Y., Kozaki S. Solubilization and characterization of the acceptor for Clostridium botulinum type B neurotoxin from rat brain synaptic membranes. Biochim Biophys Acta. 1993 Nov 28;1158(3):333–338. doi: 10.1016/0304-4165(93)90032-4. [DOI] [PubMed] [Google Scholar]
- Nishiki T., Tokuyama Y., Kamata Y., Nemoto Y., Yoshida A., Sato K., Sekiguchi M., Takahashi M., Kozaki S. The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett. 1996 Jan 15;378(3):253–257. doi: 10.1016/0014-5793(95)01471-3. [DOI] [PubMed] [Google Scholar]
- Patarnello T., Bargelloni L., Rossetto O., Schiavo G., Montecucco C. Neurotransmission and secretion. Nature. 1993 Aug 12;364(6438):581–582. doi: 10.1038/364581b0. [DOI] [PubMed] [Google Scholar]
- Sakaguchi G. Clostridium botulinum toxins. Pharmacol Ther. 1982;19(2):165–194. doi: 10.1016/0163-7258(82)90061-4. [DOI] [PubMed] [Google Scholar]
- Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832–835. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
- Schiavo G., Rossetto O., Benfenati F., Poulain B., Montecucco C. Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus. Ann N Y Acad Sci. 1994 Mar 9;710:65–75. doi: 10.1111/j.1749-6632.1994.tb26614.x. [DOI] [PubMed] [Google Scholar]
- Schiavo G., Rossetto O., Catsicas S., Polverino de Laureto P., DasGupta B. R., Benfenati F., Montecucco C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem. 1993 Nov 15;268(32):23784–23787. [PubMed] [Google Scholar]
- Schiavo G., Santucci A., Dasgupta B. R., Mehta P. P., Jontes J., Benfenati F., Wilson M. C., Montecucco C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993 Nov 29;335(1):99–103. doi: 10.1016/0014-5793(93)80448-4. [DOI] [PubMed] [Google Scholar]
- Schiavo G., Shone C. C., Rossetto O., Alexander F. C., Montecucco C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem. 1993 Jun 5;268(16):11516–11519. [PubMed] [Google Scholar]
- Simpson L. L., Dasgupta B. R. Botulinum neurotoxin type E: studies on mechanism of action and on structure-activity relationships. J Pharmacol Exp Ther. 1983 Jan;224(1):135–140. [PubMed] [Google Scholar]
- Simpson L. L., Schmidt J. J., Middlebrook J. L. Isolation and characterization of the Botulinum neurotoxins. Methods Enzymol. 1988;165:76–85. doi: 10.1016/s0076-6879(88)65015-4. [DOI] [PubMed] [Google Scholar]
- Williams R. S., Tse C. K., Dolly J. O., Hambleton P., Melling J. Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur J Biochem. 1983 Mar 15;131(2):437–445. doi: 10.1111/j.1432-1033.1983.tb07282.x. [DOI] [PubMed] [Google Scholar]
- Yamasaki S., Baumeister A., Binz T., Blasi J., Link E., Cornille F., Roques B., Fykse E. M., Südhof T. C., Jahn R. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem. 1994 Apr 29;269(17):12764–12772. [PubMed] [Google Scholar]
- Yamasaki S., Binz T., Hayashi T., Szabo E., Yamasaki N., Eklund M., Jahn R., Niemann H. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem Biophys Res Commun. 1994 Apr 29;200(2):829–835. doi: 10.1006/bbrc.1994.1526. [DOI] [PubMed] [Google Scholar]
- Yokosawa N., Tsuzuki K., Syuto B., Fujii N., Kimura K., Oguma K. Binding of botulinum type Cl, D and E neurotoxins to neuronal cell lines and synaptosomes. Toxicon. 1991;29(2):261–264. doi: 10.1016/0041-0101(91)90110-d. [DOI] [PubMed] [Google Scholar]
