Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2000 Aug;59(8):641–646. doi: 10.1136/ard.59.8.641

Early radiographic features in patients with anterior cruciate ligament rupture

J Buckland-Wright 1, J Lynch 1, B Dave 1
PMCID: PMC1753209  PMID: 10913063

Abstract

OBJECTIVE—To determine, in a preliminary cross sectional study of patients with anterior cruciate ligament (ACL) ruptured knees, which of the radiographic features—subchondral cortical plate thickness, trabecular sclerosis, and osteophytosis—appears before or in association with changes in joint space width (JSW) as a surrogate for articular cartilage thickness in patients with ruptured knees.
METHODS—19 patients (14 men), mean (95% CI) age 28.7 (23.6 to 33.8) years, had ACL rupture in one knee only, confirmed by arthroscopy. Anterior draw, Lachman's test, and pivot shift tests were performed and ×5 posteroanterior macroradiographs of both knees in a standing semiflexed view were taken at a mean (95% CI) time from injury of 34.3 (26.9 to 41.7) months. In each radiograph, computerised methods were used to measure minimum JSW and fractal signature analysis (FSA) to quantify the vertical and horizontal trabecular organisation, osteophyte area, and the subchondral cortical plate thickness, in the medial and lateral tibial compartments of all knees.
RESULTS—Physical examination confirmed the presence of joint laxity in the injured knees. No statistical difference in either medial or lateral JSW and subchondral cortical plate thickness was detected between ACL ruptured and uninjured knees. FSA showed a significant decrease in fractal dimension for the horizontal trabeculae (size 0.42 mm) in the medial compartment of the ACL ruptured knees compared with the uninjured knees (p<0.01, multivariate analysis of variance). There was an inverse correlation (R −0.74) between the time since knee injury and the difference in FSA values for ACL ruptured and uninjured knees in medial compartment horizontal trabeculae (size 0.4 mm). No significant changes were detected in the lateral compartment. Osteophytes were detected in the medial compartment of nine ACL injured knees.
CONCLUSION—Compared with the uninjured knee, ACL rupture leads to thickening of subchondral horizontal trabeculae (decreased FSA) in the medial tibial compartment of all knees, reaching significance at about four years after injury. Osteophytes were present in the same compartment in 9/19 knees. No changes in JSW and subchondral cortical plate thickness were detected. Whether the bony changes detected in these ACL ruptured knees presage those of early osteoarthritis requires further study.



Full Text

The Full Text of this article is available as a PDF (144.9 KB).

Figure 1  .

Figure 1  

Part of a computer screen showing a digitised macroradiograph of a knee. The region of interest used for calculating the fractal signature of the tibial cancellous bone in the medial compartment is outlined in white; the horizontal black line defines the floor of the tibial plateau.

Figure 2  .

Figure 2  

Mean (SEM) of the medial compartment fractal signature analysis of horizontal trabecular structures in the ACL injured and uninjured knees; the difference was significant (p<0.01, multivariate analysis of variance with repeat measures).

Figure 3  .

Figure 3  

Mean (95% CI) difference in medial compartment fractal signature analysis of horizontal trabecular structure between ACL ruptured and contralateral (uninjured) knee. *Indicates the trabecular structures of 0.4 mm in dimension that were significantly thicker in ACL ruptured knees (p<0.05) than in the uninjured knees.

Figure 4  .

Figure 4  

Difference in medial compartment fractal signature analysis (FSA) value for horizontal trabecular structures at 0.4 mm size between ACL ruptured and contralateral (uninjured) knee in each patient plotted against time since injury. The magnitude of the difference in FSA correlated significantly with time since injury (R=−0.74, p<0.01).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergot C., Laval-Jeantet A. M., Prêteux F., Meunier A. Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif Tissue Int. 1988 Sep;43(3):143–149. doi: 10.1007/BF02571311. [DOI] [PubMed] [Google Scholar]
  2. Buckland-Wright C. Protocols for precise radio-anatomical positioning of the tibiofemoral and patellofemoral compartments of the knee. Osteoarthritis Cartilage. 1995 Sep;3 (Suppl A):71–80. [PubMed] [Google Scholar]
  3. Buckland-Wright J. C. A new high-definition microfocal X-ray unit. Br J Radiol. 1989 Mar;62(735):201–208. doi: 10.1259/0007-1285-62-735-201. [DOI] [PubMed] [Google Scholar]
  4. Buckland-Wright J. C., Bradshaw C. R. Clinical applications of high-definition microfocal radiography. Br J Radiol. 1989 Mar;62(735):209–217. doi: 10.1259/0007-1285-62-735-209. [DOI] [PubMed] [Google Scholar]
  5. Buckland-Wright J. C., Lynch J. A., Macfarlane D. G. Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann Rheum Dis. 1996 Oct;55(10):749–755. doi: 10.1136/ard.55.10.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buckland-Wright J. C., MacFarlane D. G., Lynch J. A., Jasani M. K. Quantitative microfocal radiography detects changes in OA knee joint space width in patients in placebo controlled trial of NSAID therapy. J Rheumatol. 1995 May;22(5):937–943. [PubMed] [Google Scholar]
  7. Buckland-Wright J. C., Macfarlane D. G., Fogelman I., Emery P., Lynch J. A. Techetium 99m methylene diphosphonate bone scanning in osteoarthritic hands. Eur J Nucl Med. 1991;18(1):12–16. doi: 10.1007/BF00177678. [DOI] [PubMed] [Google Scholar]
  8. Buckland-Wright J. C., Macfarlane D. G., Jasani M. K., Lynch J. A. Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views. J Rheumatol. 1994 Sep;21(9):1734–1741. [PubMed] [Google Scholar]
  9. Buckland-Wright J. C., Macfarlane D. G., Lynch J. A., Clark B. Quantitative microfocal radiographic assessment of progression in osteoarthritis of the hand. Arthritis Rheum. 1990 Jan;33(1):57–65. doi: 10.1002/art.1780330107. [DOI] [PubMed] [Google Scholar]
  10. Buckland-Wright J. C., Macfarlane D. G., Lynch J. A., Jasani M. K., Bradshaw C. R. Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis. 1995 Apr;54(4):263–268. doi: 10.1136/ard.54.4.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Christensen S. B. Osteoarthrosis. Changes of bone, cartilage and synovial membrane in relation to bone scintigraphy. Acta Orthop Scand Suppl. 1985;214:1–43. [PubMed] [Google Scholar]
  12. Cummings S. R., Black D. Should perimenopausal women be screened for osteoporosis? Ann Intern Med. 1986 Jun;104(6):817–823. doi: 10.7326/0003-4819-104-6-817. [DOI] [PubMed] [Google Scholar]
  13. Dieppe P., Cushnaghan J., Young P., Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis. 1993 Aug;52(8):557–563. doi: 10.1136/ard.52.8.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hutton C. W., Higgs E. R., Jackson P. C., Watt I., Dieppe P. A. 99mTc HMDP bone scanning in generalised nodal osteoarthritis. II. The four hour bone scan image predicts radiographic change. Ann Rheum Dis. 1986 Aug;45(8):622–626. doi: 10.1136/ard.45.8.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kannus P., Järvinen M. Posttraumatic anterior cruciate ligament insufficiency as a cause of osteoarthritis in a knee joint. Clin Rheumatol. 1989 Jun;8(2):251–260. doi: 10.1007/BF02030082. [DOI] [PubMed] [Google Scholar]
  16. Layton M. W., Goldstein S. A., Goulet R. W., Feldkamp L. A., Kubinski D. J., Bole G. G. Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheum. 1988 Nov;31(11):1400–1405. doi: 10.1002/art.1780311109. [DOI] [PubMed] [Google Scholar]
  17. Lohmander L. S. Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. J Anat. 1994 Jun;184(Pt 3):477–492. [PMC free article] [PubMed] [Google Scholar]
  18. Lohmander L. S., Hoerrner L. A., Lark M. W. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum. 1993 Feb;36(2):181–189. doi: 10.1002/art.1780360207. [DOI] [PubMed] [Google Scholar]
  19. Lynch J. A., Buckland-Wright J. C., Macfarlane D. G. Precision of joint space width measurement in knee osteoarthritis from digital image analysis of high definition macroradiographs. Osteoarthritis Cartilage. 1993 Oct;1(4):209–218. doi: 10.1016/s1063-4584(05)80327-9. [DOI] [PubMed] [Google Scholar]
  20. Lynch J. A., Hawkes D. J., Buckland-Wright J. C. A robust and accurate method for calculating the fractal signature of texture in macroradiographs of osteoarthritic knees. Med Inform (Lond) 1991 Apr-Jun;16(2):241–251. doi: 10.3109/14639239109012130. [DOI] [PubMed] [Google Scholar]
  21. Lynch J. A., Hawkes D. J., Buckland-Wright J. C. Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature. Phys Med Biol. 1991 Jun;36(6):709–722. doi: 10.1088/0031-9155/36/6/001. [DOI] [PubMed] [Google Scholar]
  22. Macfarlane D. G., Buckland-Wright J. C., Emery P., Fogelman I., Clark B., Lynch J. Comparison of clinical, radionuclide, and radiographic features of osteoarthritis of the hands. Ann Rheum Dis. 1991 Sep;50(9):623–626. doi: 10.1136/ard.50.9.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McCrae F., Shouls J., Dieppe P., Watt I. Scintigraphic assessment of osteoarthritis of the knee joint. Ann Rheum Dis. 1992 Aug;51(8):938–942. doi: 10.1136/ard.51.8.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McDaniel W. J., Jr, Dameron T. B., Jr The untreated anterior cruciate ligament rupture. Clin Orthop Relat Res. 1983 Jan-Feb;(172):158–163. [PubMed] [Google Scholar]
  25. Neyret P., Donell S. T., Dejour H. Results of partial meniscectomy related to the state of the anterior cruciate ligament. Review at 20 to 35 years. J Bone Joint Surg Br. 1993 Jan;75(1):36–40. doi: 10.1302/0301-620X.75B1.8421030. [DOI] [PubMed] [Google Scholar]
  26. Noyes F. R., Mooar P. A., Matthews D. S., Butler D. L. The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am. 1983 Feb;65(2):154–162. doi: 10.2106/00004623-198365020-00003. [DOI] [PubMed] [Google Scholar]
  27. Roos H., Adalberth T., Dahlberg L., Lohmander L. S. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage. 1995 Dec;3(4):261–267. doi: 10.1016/s1063-4584(05)80017-2. [DOI] [PubMed] [Google Scholar]
  28. Rosen M. A., Jackson D. W., Berger P. E. Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy. 1991;7(1):45–51. doi: 10.1016/0749-8063(91)90077-b. [DOI] [PubMed] [Google Scholar]
  29. Ruttimann U. E., Webber R. L., Hazelrig J. B. Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surg Oral Med Oral Pathol. 1992 Jul;74(1):98–110. doi: 10.1016/0030-4220(92)90222-c. [DOI] [PubMed] [Google Scholar]
  30. Sherman M. F., Warren R. F., Marshall J. L., Savatsky G. J. A clinical and radiographical analysis of 127 anterior cruciate insufficient knees. Clin Orthop Relat Res. 1988 Feb;227:229–237. [PubMed] [Google Scholar]
  31. Sommerlath K., Lysholm J., Gillquist J. The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9 to 16 year followup. Am J Sports Med. 1991 Mar-Apr;19(2):156–162. doi: 10.1177/036354659101900211. [DOI] [PubMed] [Google Scholar]
  32. Speer K. P., Spritzer C. E., Bassett F. H., 3rd, Feagin J. A., Jr, Garrett W. E., Jr Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med. 1992 Jul-Aug;20(4):382–389. doi: 10.1177/036354659202000403. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES