Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jun;65(6):2362–2370. doi: 10.1128/iai.65.6.2362-2370.1997

The role of tyrosine phosphorylation in lipopolysaccharide- and zymosan-induced procoagulant activity and tissue factor expression in macrophages.

A P Dackiw 1, S Grinstein 1, G F Brisseau 1, I D McGilvray 1, A B Nathens 1, J A McGuire 1, R Romanek 1, P Y Cheung 1, O D Rotstein 1
PMCID: PMC175327  PMID: 9169775

Abstract

The expression of surface procoagulants by exudative macrophages represents an important mechanism underlying local fibrin deposition at sites of extravascular inflammation. The present studies investigated the contribution of tyrosine phosphorylation to the generation of macrophage procoagulant activity (PCA) and tissue factor expression in response to proinflammatory stimuli. Both lipopolysaccharide (LPS) and zymosan rapidly stimulated tyrosine phosphorylation in elicited murine peritoneal macrophages. This effect was prevented by the tyrosine kinase inhibitors genistein and herbimycin and augmented by the addition of the phosphotyrosine phosphatase inhibitor vanadate. The vanadate-mediated rise in phosphotyrosine accumulation was abrogated by the use of diphenylene iodonium, an inhibitor of the respiratory burst oxidase, suggesting a role for peroxides of vanadate as contributors to the tyrosine phosphorylation. This notion was supported by the finding that vanadyl hydroperoxide markedly increased the accumulation of phosphotyrosine residues. To define the role of tyrosine phosphorylation in the induction of macrophage PCA by LPS, the effects of tyrosine kinase inhibition by genistein and herbimycin were investigated. Both agents inhibited the expression of macrophage PCA. Further, Northern blot analysis with the cDNA probe for murine tissue factor indicated that the inhibition occurred at the mRNA level or earlier. Since vanadate augmented phosphotyrosine accumulation, it was hypothesized that it might enhance generation of macrophage products. However, vanadate reduced induction of PCA in response to LPS. By contrast, vanadate augmented basal prostaglandin E2 (PGE2) release and stimulated PGE2 release by macrophages. Indomethacin prevented the increase in PGE2 but only partially restored normal levels of PCA. The effect of vanadate on tissue factor expression appeared to be posttranscriptional. These studies thus demonstrate, by functional Western blotting and Northern blotting techniques, that tyrosine phosphorylation plays a role in the regulation of macrophage PCA and tissue factor expression in response to proinflammatory stimuli.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almdahl S. M., Brox J. H., Osterud B. Mononuclear phagocyte thromboplastin and endotoxin in patients with secondary bacterial peritonitis. Scand J Gastroenterol. 1987 Oct;22(8):914–918. doi: 10.3109/00365528708991935. [DOI] [PubMed] [Google Scholar]
  2. Almdahl S. M., Osterud B., Melby K., Giercksky K. E. Mononuclear phagocyte thromboplastin, bacterial counts and endotoxin levels in experimental endogenous gram-negative sepsis. Acta Chir Scand. 1986 May;152:351–355. [PubMed] [Google Scholar]
  3. Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
  4. Beaty C. D., Franklin T. L., Uehara Y., Wilson C. B. Lipopolysaccharide-induced cytokine production in human monocytes: role of tyrosine phosphorylation in transmembrane signal transduction. Eur J Immunol. 1994 Jun;24(6):1278–1284. doi: 10.1002/eji.1830240606. [DOI] [PubMed] [Google Scholar]
  5. Beutler B., Krochin N., Milsark I. W., Luedke C., Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986 May 23;232(4753):977–980. doi: 10.1126/science.3754653. [DOI] [PubMed] [Google Scholar]
  6. Boulet I., Ralph S., Stanley E., Lock P., Dunn A. R., Green S. P., Phillips W. A. Lipopolysaccharide- and interferon-gamma-induced expression of hck and lyn tyrosine kinases in murine bone marrow-derived macrophages. Oncogene. 1992 Apr;7(4):703–710. [PubMed] [Google Scholar]
  7. Bourne H. R. Signal transduction. Team blue sees red. Nature. 1995 Aug 31;376(6543):727–729. doi: 10.1038/376727a0. [DOI] [PubMed] [Google Scholar]
  8. Brand K., Fowler B. J., Edgington T. S., Mackman N. Tissue factor mRNA in THP-1 monocytic cells is regulated at both transcriptional and posttranscriptional levels in response to lipopolysaccharide. Mol Cell Biol. 1991 Sep;11(9):4732–4738. doi: 10.1128/mcb.11.9.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brozna J. P., Carson S. D. Monocyte-associated tissue factor is suppressed by phorbol myristate acetate. Blood. 1988 Aug;72(2):456–462. [PubMed] [Google Scholar]
  10. Car B. D., Slauson D. O., Doré M., Suyemoto M. M. Endotoxin-mediated bovine alveolar macrophage procoagulant induction is dependent on protein kinase C activation. Inflammation. 1990 Dec;14(6):681–689. doi: 10.1007/BF00916371. [DOI] [PubMed] [Google Scholar]
  11. Car B. D., Slauson D. O., Suyemoto M. M., Doré M., Neilsen N. R. Expression and kinetics of induced procoagulant activity in bovine pulmonary alveolar macrophages. Exp Lung Res. 1991 Sep-Oct;17(5):939–957. doi: 10.3109/01902149109064327. [DOI] [PubMed] [Google Scholar]
  12. Chalkiadakis G., Kostakis A., Karayannacos P. E., Giamarellou H., Dontas I., Sakellariou I., Skalkeas G. D. The effect of heparin upon fibrinopurulent peritonitis in rats. Surg Gynecol Obstet. 1983 Sep;157(3):257–260. [PubMed] [Google Scholar]
  13. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  14. Colvin R. B., Johnson R. A., Mihm M. C., Jr, Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. I. Fibrin deposition in delayed skin reactions in man. J Exp Med. 1973 Sep 1;138(3):686–698. doi: 10.1084/jem.138.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Colvin R. B., Mosesson M. W., Dvorak H. F. Delayed-type hypersensitivity skin reactions in congenital afibrinogenemia lack fibrin deposition and induration. J Clin Invest. 1979 Jun;63(6):1302–1306. doi: 10.1172/JCI109425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Creasey A. A., Chang A. C., Feigen L., Wün T. C., Taylor F. B., Jr, Hinshaw L. B. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest. 1993 Jun;91(6):2850–2860. doi: 10.1172/JCI116529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Crutchley D. J., Hirsh M. J. The stable prostacyclin analog, iloprost, and prostaglandin E1 inhibit monocyte procoagulant activity in vitro. Blood. 1991 Jul 15;78(2):382–386. [PubMed] [Google Scholar]
  18. Crutchley D. J., Solomon D. E., Conanan L. B. Prostacyclin analogues inhibit tissue factor expression in the human monocytic cell line THP-1 via a cyclic AMP-dependent mechanism. Arterioscler Thromb. 1992 Jun;12(6):664–670. doi: 10.1161/01.atv.12.6.664. [DOI] [PubMed] [Google Scholar]
  19. Daniel-Issakani S., Spiegel A. M., Strulovici B. Lipopolysaccharide response is linked to the GTP binding protein, Gi2, in the promonocytic cell line U937. J Biol Chem. 1989 Dec 5;264(34):20240–20247. [PubMed] [Google Scholar]
  20. Dong Z. Y., Lu S., Zhang Y. H. Effects of pretreatment with protein kinase C activators on macrophage activation for tumor cytotoxicity, secretion of tumor necrosis factor, and its mRNA expression. Immunobiology. 1989 Oct;179(4-5):382–394. doi: 10.1016/s0171-2985(89)80043-9. [DOI] [PubMed] [Google Scholar]
  21. Dong Z., Qi X., Fidler I. J. Tyrosine phosphorylation of mitogen-activated protein kinases is necessary for activation of murine macrophages by natural and synthetic bacterial products. J Exp Med. 1993 Apr 1;177(4):1071–1077. doi: 10.1084/jem.177.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Dong Z., Qi X., Xie K., Fidler I. J. Protein tyrosine kinase inhibitors decrease induction of nitric oxide synthase activity in lipopolysaccharide-responsive and lipopolysaccharide-nonresponsive murine macrophages. J Immunol. 1993 Sep 1;151(5):2717–2724. [PubMed] [Google Scholar]
  23. Downey G. P., Chan C. K., Fialkow L. NADPH oxidase-derived reactive oxygen intermediates regulate tyrosine phosphorylation in human neutrophils. Chest. 1994 Mar;105(3 Suppl):85S–85S. doi: 10.1378/chest.105.3_supplement.85s. [DOI] [PubMed] [Google Scholar]
  24. Ellis J. A., Mayer S. J., Jones O. T. The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochem J. 1988 May 1;251(3):887–891. doi: 10.1042/bj2510887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fabri P. J., Ellison E. C., Anderson E. D., Kudsk K. A. High molecular weight dextran--effect on adhesion formation and peritonitis in rats. Surgery. 1983 Aug;94(2):336–341. [PubMed] [Google Scholar]
  26. Fialkow L., Chan C. K., Grinstein S., Downey G. P. Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase. Role of reactive oxygen intermediates. J Biol Chem. 1993 Aug 15;268(23):17131–17137. [PubMed] [Google Scholar]
  27. Geng Y., Zhang B., Lotz M. Protein tyrosine kinase activation is required for lipopolysaccharide induction of cytokines in human blood monocytes. J Immunol. 1993 Dec 15;151(12):6692–6700. [PubMed] [Google Scholar]
  28. Gregory S. A., Morrissey J. H., Edgington T. S. Regulation of tissue factor gene expression in the monocyte procoagulant response to endotoxin. Mol Cell Biol. 1989 Jun;9(6):2752–2755. doi: 10.1128/mcb.9.6.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Grinstein S., Furuya W. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J Biol Chem. 1992 Sep 5;267(25):18122–18125. [PubMed] [Google Scholar]
  30. Grinstein S., Furuya W., Lu D. J., Mills G. B. Vanadate stimulates oxygen consumption and tyrosine phosphorylation in electropermeabilized human neutrophils. J Biol Chem. 1990 Jan 5;265(1):318–327. [PubMed] [Google Scholar]
  31. Han J., Lee J. D., Tobias P. S., Ulevitch R. J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem. 1993 Nov 25;268(33):25009–25014. [PubMed] [Google Scholar]
  32. Harnett M., Rigley K. The role of G-proteins versus protein tyrosine kinases in the regulation of lymphocyte activation. Immunol Today. 1992 Dec;13(12):482–486. doi: 10.1016/0167-5699(92)90022-Y. [DOI] [PubMed] [Google Scholar]
  33. Haziot A., Chen S., Ferrero E., Low M. G., Silber R., Goyert S. M. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547–552. [PubMed] [Google Scholar]
  34. Hidaka H., Kobayashi R. Pharmacology of protein kinase inhibitors. Annu Rev Pharmacol Toxicol. 1992;32:377–397. doi: 10.1146/annurev.pa.32.040192.002113. [DOI] [PubMed] [Google Scholar]
  35. Imamura T., Iyama K., Takeya M., Kambara T., Nakamura S. Role of macrophage tissue factor in the development of the delayed hypersensitivity reaction in monkey skin. Cell Immunol. 1993 Dec;152(2):614–622. doi: 10.1006/cimm.1993.1317. [DOI] [PubMed] [Google Scholar]
  36. Jakway J. P., DeFranco A. L. Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide. Science. 1986 Nov 7;234(4777):743–746. doi: 10.1126/science.3095921. [DOI] [PubMed] [Google Scholar]
  37. Janco R. L., Morris P. J. Regulation of monocyte procoagulant by chemoattractants. Blood. 1985 Mar;65(3):545–552. [PubMed] [Google Scholar]
  38. Kornberg A., Treves A., Rachmilewitz E. A., Fibach E. Generation of procoagulant activity (PCA) by phorbol-esters-induced macrophages derived from a leukemic promyelocytic cell line (HL-60). Blood. 1982 May;59(5):1061–1066. [PubMed] [Google Scholar]
  39. Kovacs E. J., Radzioch D., Young H. A., Varesio L. Differential inhibition of IL-1 and TNF-alpha mRNA expression by agents which block second messenger pathways in murine macrophages. J Immunol. 1988 Nov 1;141(9):3101–3105. [PubMed] [Google Scholar]
  40. Kucey D. S., Cheung P. Y., Rotstein O. D. Platelet-activating factor modulates endotoxin-induced macrophage procoagulant activity by a protein kinase C-dependent mechanism. Infect Immun. 1992 Mar;60(3):944–950. doi: 10.1128/iai.60.3.944-950.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kucey D. S., Kubicki E. I., Rotstein O. D. Platelet-activating factor primes endotoxin-stimulated macrophage procoagulant activity. J Surg Res. 1991 May;50(5):436–441. doi: 10.1016/0022-4804(91)90021-d. [DOI] [PubMed] [Google Scholar]
  42. Kunkel S. L., Wiggins R. C., Chensue S. W., Larrick J. Regulation of macrophage tumor necrosis factor production by prostaglandin E2. Biochem Biophys Res Commun. 1986 May 29;137(1):404–410. doi: 10.1016/0006-291x(86)91224-6. [DOI] [PubMed] [Google Scholar]
  43. Lando P. A., Edgington T. S. Lymphoid procoagulant response to bacterial endotoxin in the rat. Infect Immun. 1985 Dec;50(3):660–666. doi: 10.1128/iai.50.3.660-666.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lemischka I., Sharp P. A. The sequences of an expressed rat alpha-tubulin gene and a pseudogene with an inserted repetitive element. Nature. 1982 Nov 25;300(5890):330–335. doi: 10.1038/300330a0. [DOI] [PubMed] [Google Scholar]
  45. Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. doi: 10.1038/376737a0. [DOI] [PubMed] [Google Scholar]
  46. Levine L. Actions of vanadate on arachidonic acid metabolism by cells in culture. Prostaglandins. 1991 Jan;41(1):7–19. doi: 10.1016/0090-6980(91)90100-t. [DOI] [PubMed] [Google Scholar]
  47. Levy G. A., Schwartz B. S., Edgington T. S. The kinetics and metabolic requirements for direct lymphocyte induction of human procoagulant monokines by bacterial lipopolysaccharide. J Immunol. 1981 Jul;127(1):357–363. [PubMed] [Google Scholar]
  48. Liochev S. I., Fridovich I. The roles of O2-, HO(.), and secondarily derived radicals in oxidation reactions catalyzed by vanadium salts. Arch Biochem Biophys. 1991 Dec;291(2):379–382. doi: 10.1016/0003-9861(91)90149-d. [DOI] [PubMed] [Google Scholar]
  49. Liochev S. I., Fridovich I. Vanadate-stimulated oxidation of NAD(P)H in the presence of biological membranes and other sources of O2-. Arch Biochem Biophys. 1990 May 15;279(1):1–7. doi: 10.1016/0003-9861(90)90454-7. [DOI] [PubMed] [Google Scholar]
  50. Luchtman-Jones L., Broze G. J., Jr The current status of coagulation. Ann Med. 1995 Feb;27(1):47–52. doi: 10.3109/07853899509031935. [DOI] [PubMed] [Google Scholar]
  51. Lyberg T. Effect of cyclic AMP and cyclic GMP on thromboplastin (factor III) synthesis in human monocytes in vitro. Thromb Haemost. 1983 Dec 30;50(4):804–809. [PubMed] [Google Scholar]
  52. Lyberg T., Nilsson K., Prydz H. Synthesis of thromboplastin by U-937 cells. Br J Haematol. 1982 Aug;51(4):631–641. doi: 10.1111/j.1365-2141.1982.tb02827.x. [DOI] [PubMed] [Google Scholar]
  53. Mackman N., Brand K., Edgington T. S. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. J Exp Med. 1991 Dec 1;174(6):1517–1526. doi: 10.1084/jem.174.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. McRitchie D. I., Girotti M. J., Glynn M. F., Goldberg J. M., Rotstein O. D. Effect of systemic fibrinogen depletion on intraabdominal abscess formation. J Lab Clin Med. 1991 Jul;118(1):48–55. [PubMed] [Google Scholar]
  55. Michie H. R., Manogue K. R., Spriggs D. R., Revhaug A., O'Dwyer S., Dinarello C. A., Cerami A., Wolff S. M., Wilmore D. W. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med. 1988 Jun 9;318(23):1481–1486. doi: 10.1056/NEJM198806093182301. [DOI] [PubMed] [Google Scholar]
  56. Mohri M., Spriggs D. R., Kufe D. Effects of lipopolysaccharide on phospholipase A2 activity and tumor necrosis factor expression in HL-60 cells. J Immunol. 1990 Apr 1;144(7):2678–2682. [PubMed] [Google Scholar]
  57. Nemenoff R. A., Winitz S., Qian N. X., Van Putten V., Johnson G. L., Heasley L. E. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem. 1993 Jan 25;268(3):1960–1964. [PubMed] [Google Scholar]
  58. Novogrodsky A., Vanichkin A., Patya M., Gazit A., Osherov N., Levitzki A. Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science. 1994 May 27;264(5163):1319–1322. doi: 10.1126/science.8191285. [DOI] [PubMed] [Google Scholar]
  59. Ohmori Y., Hamilton T. A. Ca2+ and calmodulin selectively regulate lipopolysaccharide-inducible cytokine mRNA expression in murine peritoneal macrophages. J Immunol. 1992 Jan 15;148(2):538–545. [PubMed] [Google Scholar]
  60. Prpic V., Weiel J. E., Somers S. D., DiGuiseppi J., Gonias S. L., Pizzo S. V., Hamilton T. A., Herman B., Adams D. O. Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol. 1987 Jul 15;139(2):526–533. [PubMed] [Google Scholar]
  61. Prydz H., Allison A. C. Tissue thromboplastin activity of isolated human monocytes. Thromb Haemost. 1978 Jun 30;39(3):582–591. [PubMed] [Google Scholar]
  62. Radzioch D., Varesio L. Protein kinase C inhibitors block the activation of macrophages by IFN-beta but not by IFN-gamma. J Immunol. 1988 Feb 15;140(4):1259–1263. [PubMed] [Google Scholar]
  63. Ranganathan G., Blatti S. P., Subramaniam M., Fass D. N., Maihle N. J., Getz M. J. Cloning of murine tissue factor and regulation of gene expression by transforming growth factor type beta 1. J Biol Chem. 1991 Jan 5;266(1):496–501. [PubMed] [Google Scholar]
  64. Rosenthal G. A., Levy G., Rotstein O. D. Induction of macrophage procoagulant activity by Bacteroides fragilis. Infect Immun. 1989 Feb;57(2):338–343. doi: 10.1128/iai.57.2.338-343.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rotstein O. D., Kao J. Prevention of intra-abdominal abscesses by fibrinolysis using recombinant tissue plasminogen activator. J Infect Dis. 1988 Oct;158(4):766–772. doi: 10.1093/infdis/158.4.766. [DOI] [PubMed] [Google Scholar]
  66. Sanguedolce M. V., Capo C., Bouhamdan M., Bongrand P., Huang C. K., Mege J. L. Zymosan-induced tyrosine phosphorylations in human monocytes. Role of protein kinase C. J Immunol. 1993 Jul 1;151(1):405–414. [PubMed] [Google Scholar]
  67. Scholl P. R., Ahern D., Geha R. S. Protein tyrosine phosphorylation induced via the IgG receptors Fc gamma Ri and Fc gamma RII in the human monocytic cell line THP-1. J Immunol. 1992 Sep 1;149(5):1751–1757. [PubMed] [Google Scholar]
  68. Scholl P. R., Trede N., Chatila T. A., Geha R. S. Role of protein tyrosine phosphorylation in monokine induction by the staphylococcal superantigen toxic shock syndrome toxin-1. J Immunol. 1992 Apr 1;148(7):2237–2241. [PubMed] [Google Scholar]
  69. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  70. Stefanová I., Corcoran M. L., Horak E. M., Wahl L. M., Bolen J. B., Horak I. D. Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn. J Biol Chem. 1993 Oct 5;268(28):20725–20728. [PubMed] [Google Scholar]
  71. Taylor F. B., Jr, Chang A., Ruf W., Morrissey J. H., Hinshaw L., Catlett R., Blick K., Edgington T. S. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock. 1991 Mar;33(3):127–134. [PubMed] [Google Scholar]
  72. Ternisien C., Ollivier V., Khechai F., Ramani M., Hakim J., de Prost D. Protein tyrosine kinase activation is required for LPS and PMA induction of tissue factor mRNA in human blood monocytes. Thromb Haemost. 1995 Mar;73(3):413–420. [PubMed] [Google Scholar]
  73. Ternisien C., Ramani M., Ollivier V., Khechai F., Vu T., Hakim J., de Prost D. Endotoxin-induced tissue factor in human monocytes is dependent upon protein kinase C activation. Thromb Haemost. 1993 Nov 15;70(5):800–806. [PubMed] [Google Scholar]
  74. Trudel S., Pâquet M. R., Grinstein S. Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL60 cells. Role of reduced oxygen metabolites. Biochem J. 1991 Jun 15;276(Pt 3):611–619. doi: 10.1042/bj2760611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Tsunawaki S., Nathan C. F. Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J Biol Chem. 1984 Apr 10;259(7):4305–4312. [PubMed] [Google Scholar]
  76. Weinstein S. L., Gold M. R., DeFranco A. L. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4148–4152. doi: 10.1073/pnas.88.10.4148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Weinstein S. L., June C. H., DeFranco A. L. Lipopolysaccharide-induced protein tyrosine phosphorylation in human macrophages is mediated by CD14. J Immunol. 1993 Oct 1;151(7):3829–3838. [PubMed] [Google Scholar]
  78. Weinstein S. L., Sanghera J. S., Lemke K., DeFranco A. L., Pelech S. L. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem. 1992 Jul 25;267(21):14955–14962. [PubMed] [Google Scholar]
  79. Whitehead T. P., Kricka L. J., Carter T. J., Thorpe G. H. Analytical luminescence: its potential in the clinical laboratory. Clin Chem. 1979 Sep;25(9):1531–1546. [PubMed] [Google Scholar]
  80. Wightman P. D., Raetz C. R. The activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide. J Biol Chem. 1984 Aug 25;259(16):10048–10052. [PubMed] [Google Scholar]
  81. Wright S. D., Ramos R. A., Patel M., Miller D. S. Septin: a factor in plasma that opsonizes lipopolysaccharide-bearing particles for recognition by CD14 on phagocytes. J Exp Med. 1992 Sep 1;176(3):719–727. doi: 10.1084/jem.176.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  83. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  84. Zhang X., Morrison D. C. Pertussis toxin-sensitive factor differentially regulates lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production in mouse peritoneal macrophages. J Immunol. 1993 Feb 1;150(3):1011–1018. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES