Abstract
Haemophilus ducreyi is a hemin-requiring bacterium causing the genital ulcer disease chancroid. Previously we demonstrated that the heat shock protein GroEL was immunogenic and possibly highly expressed in a mammalian host. The present study was initiated to (i) determine the relative amounts of GroEL expressed by H. ducreyi during in vitro exposure to stresses and (ii) evaluate whether a high level of GroEL is directly or indirectly required for survival and adherence of stressed H. ducreyi. Using scanning densitometry of sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles, we found that H. ducreyi expressed high basal levels of GroEL, averaging fivefold greater than in Escherichia coli. These high GroEL levels increased up to twofold upon exposure of the organism to heat shock or high levels of hydrogen peroxide and during adherence to two human genital cell lines. Furthermore, when the gene for DnaK was present on a multicopy plasmid in H. ducreyi, a 1.8-fold increase in DnaK and a 2.3-fold reduction in GroEL were seen. These results suggest that DnaK serves as a negative modulator of H. ducreyi GroEL. Subsequently we found that H. ducreyi with lower GroEL had diminished ability to survive when challenged by heat and oxidative stresses. In addition, the long, parallel chains characteristic of virulent strains of H. ducreyi were absent when GroEL was lowered, so that fewer bacterial cells adhered to the human cells. These results suggest that the unusually high basal levels of GroEL are involved, either directly or indirectly, in the survival, chaining, and adherence of H. ducreyi in the presence of the combined stresses of the host environment.
Full Text
The Full Text of this article is available as a PDF (1,009.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blum P., Ory J., Bauernfeind J., Krska J. Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol. 1992 Nov;174(22):7436–7444. doi: 10.1128/jb.174.22.7436-7444.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown T. J., Jardine J., Ison C. A. Antibodies directed against Haemophilus ducreyi heat shock proteins. Microb Pathog. 1993 Aug;15(2):131–139. doi: 10.1006/mpat.1993.1063. [DOI] [PubMed] [Google Scholar]
- Buchmeier N. A., Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science. 1990 May 11;248(4956):730–732. doi: 10.1126/science.1970672. [DOI] [PubMed] [Google Scholar]
- Cowing D. W., Bardwell J. C., Craig E. A., Woolford C., Hendrix R. W., Gross C. A. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A. 1985 May;82(9):2679–2683. doi: 10.1073/pnas.82.9.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolan K. M., Greenberg E. P. Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli. J Bacteriol. 1992 Aug;174(15):5132–5135. doi: 10.1128/jb.174.15.5132-5135.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn B. E., Roop R. M., 2nd, Sung C. C., Sharma S. A., Perez-Perez G. I., Blaser M. J. Identification and purification of a cpn60 heat shock protein homolog from Helicobacter pylori. Infect Immun. 1992 May;60(5):1946–1951. doi: 10.1128/iai.60.5.1946-1951.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ericsson M., Tärnvik A., Kuoppa K., Sandström G., Sjöstedt A. Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infect Immun. 1994 Jan;62(1):178–183. doi: 10.1128/iai.62.1.178-183.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Everest P., Frankel G., Li J., Lund P., Chatfield S., Dougan G. Expression of LacZ from the htrA, nirB and groE promoters in a Salmonella vaccine strain: influence of growth in mammalian cells. FEMS Microbiol Lett. 1995 Feb 1;126(1):97–101. doi: 10.1111/j.1574-6968.1995.tb07398.x. [DOI] [PubMed] [Google Scholar]
- Farr S. B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1991 Dec;55(4):561–585. doi: 10.1128/mr.55.4.561-585.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fayet O., Ziegelhoffer T., Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989 Mar;171(3):1379–1385. doi: 10.1128/jb.171.3.1379-1385.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. F., Long S. R. Rhizobium--plant signal exchange. Nature. 1992 Jun 25;357(6380):655–660. doi: 10.1038/357655a0. [DOI] [PubMed] [Google Scholar]
- Govezensky D., Greener T., Segal G., Zamir A. Involvement of GroEL in nif gene regulation and nitrogenase assembly. J Bacteriol. 1991 Oct;173(20):6339–6346. doi: 10.1128/jb.173.20.6339-6346.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen E. J., Latimer J. L., Thomas S. E., Helminen M., Albritton W. L., Radolf J. D. Use of electroporation to construct isogenic mutants of Haemophilus ducreyi. J Bacteriol. 1992 Aug;174(16):5442–5449. doi: 10.1128/jb.174.16.5442-5449.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herendeen S. L., VanBogelen R. A., Neidhardt F. C. Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol. 1979 Jul;139(1):185–194. doi: 10.1128/jb.139.1.185-194.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkins D. E., Schultz J. E., Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3910–3914. doi: 10.1128/jb.170.9.3910-3914.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanemori M., Mori H., Yura T. Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli. J Bacteriol. 1994 Jul;176(14):4235–4242. doi: 10.1128/jb.176.14.4235-4242.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kogoma T., Yura T. Sensitization of Escherichia coli cells to oxidative stress by deletion of the rpoH gene, which encodes the heat shock sigma factor. J Bacteriol. 1992 Jan;174(2):630–632. doi: 10.1128/jb.174.2.630-632.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liberek K., Galitski T. P., Zylicz M., Georgopoulos C. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3516–3520. doi: 10.1073/pnas.89.8.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma M., Eaton J. W. Multicellular oxidant defense in unicellular organisms. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7924–7928. doi: 10.1073/pnas.89.17.7924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarty J. S., Walker G. C. DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation. J Bacteriol. 1994 Feb;176(3):764–780. doi: 10.1128/jb.176.3.764-780.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsons L. M., Waring A. L., Shayegani M. Molecular analysis of the Haemophilus ducreyi groE heat shock operon. Infect Immun. 1992 Oct;60(10):4111–4118. doi: 10.1128/iai.60.10.4111-4118.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rockabrand D., Arthur T., Korinek G., Livers K., Blum P. An essential role for the Escherichia coli DnaK protein in starvation-induced thermotolerance, H2O2 resistance, and reductive division. J Bacteriol. 1995 Jul;177(13):3695–3703. doi: 10.1128/jb.177.13.3695-3703.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scopio A., Johnson P., Laquerre A., Nelson D. R. Subcellular localization and chaperone activities of Borrelia burgdorferi Hsp60 and Hsp70. J Bacteriol. 1994 Nov;176(21):6449–6456. doi: 10.1128/jb.176.21.6449-6456.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi W., Zhou Y., Wild J., Adler J., Gross C. A. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol. 1992 Oct;174(19):6256–6263. doi: 10.1128/jb.174.19.6256-6263.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegele D. A., Kolter R. Life after log. J Bacteriol. 1992 Jan;174(2):345–348. doi: 10.1128/jb.174.2.345-348.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilly K., McKittrick N., Zylicz M., Georgopoulos C. The dnaK protein modulates the heat-shock response of Escherichia coli. Cell. 1983 Sep;34(2):641–646. doi: 10.1016/0092-8674(83)90396-3. [DOI] [PubMed] [Google Scholar]
- Totten P. A., Stamm W. E. Clear broth and plate media for culture of Haemophilus ducreyi. J Clin Microbiol. 1994 Aug;32(8):2019–2023. doi: 10.1128/jcm.32.8.2019-2023.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trees D. L., Morse S. A. Chancroid and Haemophilus ducreyi: an update. Clin Microbiol Rev. 1995 Jul;8(3):357–375. doi: 10.1128/cmr.8.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dyk T. K., Gatenby A. A., LaRossa R. A. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature. 1989 Nov 23;342(6248):451–453. doi: 10.1038/342451a0. [DOI] [PubMed] [Google Scholar]
- Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]
- Zeilstra-Ryalls J., Fayet O., Baird L., Georgopoulos C. Sequence analysis and phenotypic characterization of groEL mutations that block lambda and T4 bacteriophage growth. J Bacteriol. 1993 Feb;175(4):1134–1143. doi: 10.1128/jb.175.4.1134-1143.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y. N., Kusukawa N., Erickson J. W., Gross C. A., Yura T. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J Bacteriol. 1988 Aug;170(8):3640–3649. doi: 10.1128/jb.170.8.3640-3649.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]