Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2001 Apr;60(4):395–398. doi: 10.1136/ard.60.4.395

Tensile properties of rat anterior cruciate ligament in collagen induced arthritis

K Nawata 1, M Enokida 1, D Yamasaki 1, T Minamizaki 1, H Hagino 1, Y Morio 1, R Teshima 1
PMCID: PMC1753621  PMID: 11247872

Abstract

OBJECTIVES—To investigate the effects of collagen induced arthritis (CIA) on the tensile properties of rat anterior cruciate ligament (ACL).
METHODS—The tensile strength, bone mineral density (BMD), and histology of ACL units from rats with CIA were investigated.
RESULTS—The tensile strength of the ACL unit was significantly lower in the rats with CIA at 10 weeks after immunisation (ultimate failure load, 74.9% of the control; stiffness, 62.0% of the control). The major mode of failure was femoral avulsion, and the BMD was significantly lower in the rats with CIA. A histological examination of the ligament insertion in rats with CIA showed resorption of the cortical bone beneath the ACL insertion and an enlarged mineralised fibrocartilage zone.
CONCLUSIONS—These findings indicate that the decrease in tensile strength of ACL units correlated with histological changes in the ligament-bone attachment, such as bone resorption beneath the ligament insertion site and an enlargement of the mineralised fibrocartilage zone.



Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Figure 1  .

Figure 1  

Changes in hind foot oedema. Each value is the mean and SEM. Open symbols represent control rats; closed symbols represent rats with collagen induced arthritis.

Figure 2  .

Figure 2  

Light micrographs of femoral insertion sites of the anterior cruciate ligament (ACL) (haematoxylin and eosin). (A) Group with collagen induced arthritis (×100). Photomicrograph shows bone resorption around the bone-pannus at the peripheral margins of the ligament insertion site and the enlarged mineralised fibrocartilage zone. (B) Enlarged vascular foramina with inflammatory cell infiltration in cortical bone beneath the ACL insertion is shown (×200). (C) Control group (×100).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson-MacKenzie J. M., Billingham M. E., Bailey A. J. Collagen remodeling in the anterior cruciate ligament associated with developing spontaneous murine osteoarthritis. Biochem Biophys Res Commun. 1999 May 19;258(3):763–767. doi: 10.1006/bbrc.1999.0713. [DOI] [PubMed] [Google Scholar]
  2. Bonnet J., Zerath E., Picaud N., Lesur C., Mattio A., Tordjman C., Hott M., Marie P. J. Bone morphometric changes in adjuvant-induced polyarthritic osteopenia in rats: evidence for an early bone formation defect. J Bone Miner Res. 1993 Jun;8(6):659–668. doi: 10.1002/jbmr.5650080603. [DOI] [PubMed] [Google Scholar]
  3. COOMES E. N. Lateral instability of the knee following polyarthritis. An experimental study. Ann Rheum Dis. 1962 Dec;21:378–387. doi: 10.1136/ard.21.4.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper R. R., Misol S. Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am. 1970 Jan;52(1):1–20. [PubMed] [Google Scholar]
  5. Courtenay J. S., Dallman M. J., Dayan A. D., Martin A., Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature. 1980 Feb 14;283(5748):666–668. doi: 10.1038/283666a0. [DOI] [PubMed] [Google Scholar]
  6. Danto M. I., Woo S. L. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res. 1993 Jan;11(1):58–67. doi: 10.1002/jor.1100110108. [DOI] [PubMed] [Google Scholar]
  7. Hanyu T., Chotanaphuti T., Arai K., Tanaka T., Takahashi H. E. Histomorphometric assessment of bone changes in rats with type II collagen-induced arthritis. Bone. 1999 May;24(5):485–490. doi: 10.1016/s8756-3282(99)00006-x. [DOI] [PubMed] [Google Scholar]
  8. Havdrup T., Hulth A., Telhag H. The subchondral bone in osteoarthritis and rheumatoid arthritis of the knee. A histological and microradiographical study. Acta Orthop Scand. 1976 Jun;47(3):345–350. doi: 10.3109/17453677608992003. [DOI] [PubMed] [Google Scholar]
  9. Kolstad K., Sahlstedt B., Wigren A. Extension deficit and lateral instability in degenerative disease of the knee. Acta Orthop Scand. 1980 Aug;51(4):667–672. doi: 10.3109/17453678008990859. [DOI] [PubMed] [Google Scholar]
  10. Langman C. B., Ford K. K., Pachman L. M., Glorieux F. Vitamin D metabolism in rats with adjuvant-induced arthritis. J Bone Miner Res. 1990 Sep;5(9):905–913. doi: 10.1002/jbmr.5650050903. [DOI] [PubMed] [Google Scholar]
  11. Minne H. W., Pfeilschifter J., Scharla S., Mutschelknauss S., Schwarz A., Krempien B., Ziegler R. Inflammation-mediated osteopenia in the rat: a new animal model for pathological loss of bone mass. Endocrinology. 1984 Jul;115(1):50–54. doi: 10.1210/endo-115-1-50. [DOI] [PubMed] [Google Scholar]
  12. Noyes F. R., DeLucas J. L., Torvik P. J. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am. 1974 Mar;56(2):236–253. [PubMed] [Google Scholar]
  13. Noyes F. R., Grood E. S. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am. 1976 Dec;58(8):1074–1082. [PubMed] [Google Scholar]
  14. Pfeilschifter J., Wüster C., Vogel M., Enderes B., Ziegler R., Minne H. W. Inflammation-mediated osteopenia (IMO) during acute inflammation in rats is due to a transient inhibition of bone formation. Calcif Tissue Int. 1987 Dec;41(6):321–325. doi: 10.1007/BF02556670. [DOI] [PubMed] [Google Scholar]
  15. Pond M. J., Nuki G. Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis. 1973 Jul;32(4):387–388. doi: 10.1136/ard.32.4.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rand T., Breitenseher M., Haller J., Graninger W., Imhof H., Trattnig S. Primäre chronische Polyarthritis am Kniegelenk. Radiologe. 1996 Aug;36(8):617–623. doi: 10.1007/s001170050119. [DOI] [PubMed] [Google Scholar]
  17. Shimizu S., Shiozawa S., Shiozawa K., Imura S., Fujita T. Quantitative histologic studies on the pathogenesis of periarticular osteoporosis in rheumatoid arthritis. Arthritis Rheum. 1985 Jan;28(1):25–31. doi: 10.1002/art.1780280105. [DOI] [PubMed] [Google Scholar]
  18. Stuart J. M., Townes A. S., Kang A. H. Nature and specificity of the immune response to collagen in type II collagen-induced arthritis in mice. J Clin Invest. 1982 Mar;69(3):673–683. doi: 10.1172/JCI110495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trentham D. E., Townes A. S., Kang A. H. Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med. 1977 Sep 1;146(3):857–868. doi: 10.1084/jem.146.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wada M., Imura S., Baba H., Shimada S. Knee laxity in patients with osteoarthritis and rheumatoid arthritis. Br J Rheumatol. 1996 Jun;35(6):560–563. doi: 10.1093/rheumatology/35.6.560. [DOI] [PubMed] [Google Scholar]
  21. Wright V. Measurement of outcome in rheumatic diseases. J R Soc Med. 1985 Dec;78(12):985–994. doi: 10.1177/014107688507801203. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES