Abstract
OBJECTIVE—To analyse the relations between the urinary levels of type II collagen C-telopeptide (CTX-II) and glucosyl-galactosyl pyridinoline (Glc-Gal-PYD)—two newly developed biochemical markers of type II collagen and synovial tissue destruction respectively—disease activity and the severity of joint destruction in patients with knee osteoarthritis (OA). The clinical performance of these two new markers was compared with that of a panel of other established biochemical markers of connective tissue metabolism. METHODS—The following biochemical markers were measured in a group of 67 patients with knee OA (mean age 64 years, median disease duration eight years ) and in 67 healthy controls: for bone, serum osteocalcin, serum and urinary C-telopeptide of type I collagen (CTX-I); for cartilage, urinary CTX-II, serum cartilage oligomeric matrix protein (COMP), and serum human cartilage glycoprotein 39 (YKL-40); for synovium, urinary Glc-Gal-PYD, serum type III collagen N-propeptide (PIIINP), serum hyaluronic acid (HA); and for inflammation, serum C reactive protein. Biochemical markers were correlated with pain and physical function (WOMAC index) and with quantitative radiographic evaluation of the joint space using the posteroanterior view of the knees flexed at 30°. RESULTS—All bone turnover markers were decreased in patients with knee OA compared with controls (−36%, −38%, and −52%, p<0.0001 for serum osteocalcin, serum CTX-I and urinary CTX-I, respectively). Serum COMP (+16%, p=0.0004), urinary CTX-II (+25%, p=0.0009), urinary Glc-Gal-PYD (+18%, p=0.028), serum PIIINP (+33%, p<0.0001), and serum HA (+ 233%, p<0.0001) were increased. By univariate analyses, increased urinary Glc-Gal-PYD (r=0.41, p=0.002) and decreased serum osteocalcin (r=−0.30, p=0.025) were associated with a higher total WOMAC index. Increased urinary CTX-II (r=−0.40, p=0.0002) and Glc-Gal-PYD (r=−0.30, p=0.0046) and serum PIIINP (r=−0.29, p=0.0034) were the only markers which correlated with joint surface area. By multivariate analyses, urinary Glc-Gal-PYD and CTX-II were the most important predictors of the WOMAC index and joint damage, respectively. CONCLUSION—Knee OA appears to be characterised by a systemic decrease of bone turnover and increased cartilage and synovial tissue turnover. CTX-II, Glc-Gal-PYD, and PIIINP may be useful markers of disease severity in patients with knee OA.
Full Text
The Full Text of this article is available as a PDF (177.9 KB).
Figure 1 .
Individual values of biochemical markers of bone, cartilage, and synovium turnover in 67 patients with knee OA. Each value is expressed as a Z score—that is, as the number of standard deviations from the mean of 67 healthy controls matched for age. *p<0.0001 v 0. S = serum; U = urine; OC = osteocalcin; CTX-I, CTX-II = types I and II collagen C-telopeptide, respectively; COMP = cartilage oligomeric matrix protein; YKL-40 = human cartilage glycoprotein 39; Glc-Gal-PYD = glucosyl-galactosyl pyridinoline; HA = hyaluronic acid; PIIINP = type III collagen N-propeptide; CRP = C reactive protein.
Figure 2 .
Levels of U-CTX-II, U-Glc-Gal-PYD, and S-PIIINP according to quartiles of joint space area (JSA) of the knee. A total of 134 knees were analysed. Bars represent the mean value (SEM) of the biochemical marker in each quartile of JSA. p Values apply to the comparison of trend in biochemical marker levels for increasing JSA, assessed by analysis of variance.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman R., Asch E., Bloch D., Bole G., Borenstein D., Brandt K., Christy W., Cooke T. D., Greenwald R., Hochberg M. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986 Aug;29(8):1039–1049. doi: 10.1002/art.1780290816. [DOI] [PubMed] [Google Scholar]
- Arden N. K., Nevitt M. C., Lane N. E., Gore L. R., Hochberg M. C., Scott J. C., Pressman A. R., Cummings S. R. Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. Arthritis Rheum. 1999 Jul;42(7):1378–1385. doi: 10.1002/1529-0131(199907)42:7<1378::AID-ANR11>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Astbury C., Bird H. A., McLaren A. M., Robins S. P. Urinary excretion of pyridinium crosslinks of collagen correlated with joint damage in arthritis. Br J Rheumatol. 1994 Jan;33(1):11–15. doi: 10.1093/rheumatology/33.1.11. [DOI] [PubMed] [Google Scholar]
- Bellamy N., Buchanan W. W., Goldsmith C. H., Campbell J., Stitt L. W. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988 Dec;15(12):1833–1840. [PubMed] [Google Scholar]
- Billinghurst R. C., Dahlberg L., Ionescu M., Reiner A., Bourne R., Rorabeck C., Mitchell P., Hambor J., Diekmann O., Tschesche H. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997 Apr 1;99(7):1534–1545. doi: 10.1172/JCI119316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonde M., Qvist P., Fledelius C., Riis B. J., Christiansen C. Immunoassay for quantifying type I collagen degradation products in urine evaluated. Clin Chem. 1994 Nov;40(11 Pt 1):2022–2025. [PubMed] [Google Scholar]
- Burger H., van Daele P. L., Odding E., Valkenburg H. A., Hofman A., Grobbee D. E., Schütte H. E., Birkenhäger J. C., Pols H. A. Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthritis Rheum. 1996 Jan;39(1):81–86. doi: 10.1002/art.1780390111. [DOI] [PubMed] [Google Scholar]
- Campion G. V., Delmas P. D., Dieppe P. A. Serum and synovial fluid osteocalcin (bone gla protein) levels in joint disease. Br J Rheumatol. 1989 Oct;28(5):393–398. doi: 10.1093/rheumatology/28.5.393. [DOI] [PubMed] [Google Scholar]
- Clark A. G., Jordan J. M., Vilim V., Renner J. B., Dragomir A. D., Luta G., Kraus V. B. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. Arthritis Rheum. 1999 Nov;42(11):2356–2364. doi: 10.1002/1529-0131(199911)42:11<2356::AID-ANR14>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Dequeker J., Boonen S., Aerssens J., Westhovens R. Inverse relationship osteoarthritis-osteoporosis: what is the evidence? What are the consequences? Br J Rheumatol. 1996 Sep;35(9):813–818. doi: 10.1093/rheumatology/35.9.813. [DOI] [PubMed] [Google Scholar]
- Dieppe P., Cushnaghan J., Young P., Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis. 1993 Aug;52(8):557–563. doi: 10.1136/ard.52.8.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodge G. R., Poole A. R. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest. 1989 Feb;83(2):647–661. doi: 10.1172/JCI113929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garnero P., Grimaux M., Demiaux B., Preaudat C., Seguin P., Delmas P. D. Measurement of serum osteocalcin with a human-specific two-site immunoradiometric assay. J Bone Miner Res. 1992 Dec;7(12):1389–1398. doi: 10.1002/jbmr.5650071206. [DOI] [PubMed] [Google Scholar]
- Garnero P., Rousseau J. C., Delmas P. D. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 2000 May;43(5):953–968. doi: 10.1002/1529-0131(200005)43:5<953::AID-ANR1>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Garnero P., Sornay-Rendu E., Chapuy M. C., Delmas P. D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996 Mar;11(3):337–349. doi: 10.1002/jbmr.5650110307. [DOI] [PubMed] [Google Scholar]
- Garnero P., Sornay-Rendu E., Duboeuf F., Delmas P. D. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res. 1999 Sep;14(9):1614–1621. doi: 10.1359/jbmr.1999.14.9.1614. [DOI] [PubMed] [Google Scholar]
- Graverand M. P., Tron A. M., Ichou M., Dallard M. C., Richard M., Uebelhart D., Vignon E. Assessment of urinary hydroxypyridinium cross-links measurement in osteoarthritis. Br J Rheumatol. 1996 Nov;35(11):1091–1095. doi: 10.1093/rheumatology/35.11.1091. [DOI] [PubMed] [Google Scholar]
- Hilal G., Martel-Pelletier J., Pelletier J. P., Ranger P., Lajeunesse D. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum. 1998 May;41(5):891–899. doi: 10.1002/1529-0131(199805)41:5<891::AID-ART17>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
- Hollander A. P., Heathfield T. F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A. R. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994 Apr;93(4):1722–1732. doi: 10.1172/JCI117156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johansen J. S., Hvolris J., Hansen M., Backer V., Lorenzen I., Price P. A. Serum YKL-40 levels in healthy children and adults. Comparison with serum and synovial fluid levels of YKL-40 in patients with osteoarthritis or trauma of the knee joint. Br J Rheumatol. 1996 Jun;35(6):553–559. doi: 10.1093/rheumatology/35.6.553. [DOI] [PubMed] [Google Scholar]
- Jones G., Nguyen T., Sambrook P. N., Lord S. R., Kelly P. J., Eisman J. A. Osteoarthritis, bone density, postural stability, and osteoporotic fractures: a population based study. J Rheumatol. 1995 May;22(5):921–925. [PubMed] [Google Scholar]
- Lajeunesse D., Hilal G., Pelletier J. P., Martel-Pelletier J. Subchondral bone morphological and biochemical alterations in osteoarthritis. Osteoarthritis Cartilage. 1999 May;7(3):321–322. doi: 10.1053/joca.1998.0180. [DOI] [PubMed] [Google Scholar]
- Lane N. E., Nevitt M. C., Genant H. K., Hochberg M. C. Reliability of new indices of radiographic osteoarthritis of the hand and hip and lumbar disc degeneration. J Rheumatol. 1993 Nov;20(11):1911–1918. [PubMed] [Google Scholar]
- Lohmander L. S., Ionescu M., Jugessur H., Poole A. R. Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum. 1999 Mar;42(3):534–544. doi: 10.1002/1529-0131(199904)42:3<534::AID-ANR19>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Milgram J. W. Morphologic alterations of the subchondral bone in advanced degenerative arthritis. Clin Orthop Relat Res. 1983 Mar;(173):293–312. [PubMed] [Google Scholar]
- Månsson B., Carey D., Alini M., Ionescu M., Rosenberg L. C., Poole A. R., Heinegård D., Saxne T. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest. 1995 Mar;95(3):1071–1077. doi: 10.1172/JCI117753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Møller H. J. Connective tissue markers of rheumatoid arthritis. Scand J Clin Lab Invest. 1998 Jul;58(4):269–278. doi: 10.1080/00365519850186445. [DOI] [PubMed] [Google Scholar]
- Müller G., Michel A., Altenburg E. COMP (cartilage oligomeric matrix protein) is synthesized in ligament, tendon, meniscus, and articular cartilage. Connect Tissue Res. 1998;39(4):233–244. doi: 10.3109/03008209809021499. [DOI] [PubMed] [Google Scholar]
- Naitou K., Kushida K., Takahashi M., Ohishi T., Inoue T. Bone mineral density and bone turnover in patients with knee osteoarthritis compared with generalized osteoarthritis. Calcif Tissue Int. 2000 May;66(5):325–329. doi: 10.1007/s002230010068. [DOI] [PubMed] [Google Scholar]
- Peel N. F., Barrington N. A., Blumsohn A., Colwell A., Hannon R., Eastell R. Bone mineral density and bone turnover in spinal osteoarthrosis. Ann Rheum Dis. 1995 Nov;54(11):867–871. doi: 10.1136/ard.54.11.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersson I. F., Boegård T., Svensson B., Heinegård D., Saxne T. Changes in cartilage and bone metabolism identified by serum markers in early osteoarthritis of the knee joint. Br J Rheumatol. 1998 Jan;37(1):46–50. doi: 10.1093/rheumatology/37.1.46. [DOI] [PubMed] [Google Scholar]
- Piperno M., Hellio Le Graverand M. P., Conrozier T., Bochu M., Mathieu P., Vignon E. Quantitative evaluation of joint space width in femorotibial osteoarthritis: comparison of three radiographic views. Osteoarthritis Cartilage. 1998 Jul;6(4):252–259. doi: 10.1053/joca.1998.0118. [DOI] [PubMed] [Google Scholar]
- Poole A. R. Immunochemical markers of joint inflammation, skeletal damage and repair: where are we now? Ann Rheum Dis. 1994 Jan;53(1):3–5. doi: 10.1136/ard.53.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radin E. L., Paul I. L., Rose R. M. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972 Mar 4;1(7749):519–522. doi: 10.1016/s0140-6736(72)90179-1. [DOI] [PubMed] [Google Scholar]
- Ravaud P., Giraudeau B., Auleley G. R., Drape J. L., Rousselin B., Paolozzi L., Chastang C., Dougados M. Variability in knee radiographing: implication for definition of radiological progression in medial knee osteoarthritis. Ann Rheum Dis. 1998 Oct;57(10):624–629. doi: 10.1136/ard.57.10.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Risteli J., Niemi S., Trivedi P., Mäentausta O., Mowat A. P., Risteli L. Rapid equilibrium radioimmunoassay for the amino-terminal propeptide of human type III procollagen. Clin Chem. 1988 Apr;34(4):715–718. [PubMed] [Google Scholar]
- Robins S. P., Stewart P., Astbury C., Bird H. A. Measurement of the cross linking compound, pyridinoline, in urine as an index of collagen degradation in joint disease. Ann Rheum Dis. 1986 Dec;45(12):969–973. doi: 10.1136/ard.45.12.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenquist C., Fledelius C., Christgau S., Pedersen B. J., Bonde M., Qvist P., Christiansen C. Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem. 1998 Nov;44(11):2281–2289. [PubMed] [Google Scholar]
- Seibel M. J., Duncan A., Robins S. P. Urinary hydroxy-pyridinium crosslinks provide indices of cartilage and bone involvement in arthritic diseases. J Rheumatol. 1989 Jul;16(7):964–970. [PubMed] [Google Scholar]
- Sharif M., George E., Dieppe P. A. Synovial fluid and serum concentrations of aminoterminal propeptide of type III procollagen in healthy volunteers and patients with joint disease. Ann Rheum Dis. 1996 Jan;55(1):47–51. doi: 10.1136/ard.55.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharif M., George E., Shepstone L., Knudson W., Thonar E. J., Cushnaghan J., Dieppe P. Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee. Arthritis Rheum. 1995 Jun;38(6):760–767. doi: 10.1002/art.1780380608. [DOI] [PubMed] [Google Scholar]
- Sharif M., Saxne T., Shepstone L., Kirwan J. R., Elson C. J., Heinegård D., Dieppe P. A. Relationship between serum cartilage oligomeric matrix protein levels and disease progression in osteoarthritis of the knee joint. Br J Rheumatol. 1995 Apr;34(4):306–310. doi: 10.1093/rheumatology/34.4.306. [DOI] [PubMed] [Google Scholar]
- Sowers M., Lachance L., Jamadar D., Hochberg M. C., Hollis B., Crutchfield M., Jannausch M. L. The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum. 1999 Mar;42(3):483–489. doi: 10.1002/1529-0131(199904)42:3<483::AID-ANR13>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Spector T. D., Hart D. J., Nandra D., Doyle D. V., Mackillop N., Gallimore J. R., Pepys M. B. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum. 1997 Apr;40(4):723–727. doi: 10.1002/art.1780400419. [DOI] [PubMed] [Google Scholar]
- Stewart A., Black A., Robins S. P., Reid D. M. Bone density and bone turnover in patients with osteoarthritis and osteoporosis. J Rheumatol. 1999 Mar;26(3):622–626. [PubMed] [Google Scholar]
- Szulc P., Marchand F., Duboeuf F., Delmas P. D. Cross-sectional assessment of age-related bone loss in men: the MINOS study. Bone. 2000 Feb;26(2):123–129. doi: 10.1016/s8756-3282(99)00255-0. [DOI] [PubMed] [Google Scholar]
- Søndergaard K., Heickendorff L., Risteli L., Risteli J., Zachariae H., Stengaard-Pedersen K., Deleuran B. Increased levels of type I and III collagen and hyaluronan in scleroderma skin. Br J Dermatol. 1997 Jan;136(1):47–53. [PubMed] [Google Scholar]
- Takahashi M., Kushida K., Hoshino H., Suzuki M., Sano M., Miyamoto S., Inoue T. Concentrations of pyridinoline and deoxypyridinoline in joint tissues from patients with osteoarthritis or rheumatoid arthritis. Ann Rheum Dis. 1996 May;55(5):324–327. doi: 10.1136/ard.55.5.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson P. W., Spector T. D., James I. T., Henderson E., Hart D. J. Urinary collagen crosslinks reflect the radiographic severity of knee osteoarthritis. Br J Rheumatol. 1992 Nov;31(11):759–761. doi: 10.1093/rheumatology/31.11.759. [DOI] [PubMed] [Google Scholar]
- Zeger S. L., Liang K. Y., Albert P. S. Models for longitudinal data: a generalized estimating equation approach. Biometrics. 1988 Dec;44(4):1049–1060. [PubMed] [Google Scholar]
- Zhang Y., Glynn R. J., Felson D. T. Musculoskeletal disease research: should we analyze the joint or the person? J Rheumatol. 1996 Jul;23(7):1130–1134. [PubMed] [Google Scholar]
- Zhang Y., Hannan M. T., Chaisson C. E., McAlindon T. E., Evans S. R., Aliabadi P., Levy D., Felson D. T. Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol. 2000 Apr;27(4):1032–1037. [PubMed] [Google Scholar]


