Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jul;65(7):2613–2620. doi: 10.1128/iai.65.7.2613-2620.1997

Characterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species.

E L Aho 1, J W Botten 1, R J Hall 1, M K Larson 1, J K Ness 1
PMCID: PMC175370  PMID: 9199428

Abstract

Strains of Neisseria meningitidis elaborate one of two classes of pili. Meningococcal class I pili have many features in common with pili produced by N. gonorrhoeae, including the ability to bind monoclonal antibody SM1 and a common gene and protein structure consisting of conserved, semivariable, and hypervariable regions. Class II pili are SM1 nonreactive and display smaller subunit molecular weights than do gonococcal or meningococcal class I pili. In this study, we have determined the N-terminal amino acid sequence for class II pilin and isolated the expression locus encoding class II pilin from N. meningitidis FAM18. Meningococcal class II pilin displays features typical of type IV pili and shares extensive amino acid identity with the N-terminal conserved regions of other neisserial pilin proteins. However, the deduced class II pilin sequence displays several unique features compared with previously reported meningococcal class I and gonococcal pilin sequences. Class II pilin lacks several conserved peptide regions found within the semivariable and hypervariable regions of other neisserial pilins and displays a large deletion in a hypervariable region of the protein believed to be exposed on the pilus face in gonococcal pili. DNA sequence comparisons within all three regions of the coding sequence also suggest that the meningococcal class II pilin gene is the most dissimilar of the three types of neisserial pilE loci. Additionally, the class II locus fails to display flanking-sequence homology to class I and gonococcal genes and lacks a downstream Sma/Cla repeat sequence, a feature present in all other neisserial pilin genes examined to date. These data indicate meningococcal class II pili represent a structurally distinct class of pili and suggest that relationships among pilin genes in pathogenic Neisseria do not necessarily follow species boundaries.

Full Text

The Full Text of this article is available as a PDF (448.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aho E. L., Cannon J. G. Characterization of a silent pilin gene locus from Neisseria meningitidis strain FAM18. Microb Pathog. 1988 Nov;5(5):391–398. doi: 10.1016/0882-4010(88)90039-3. [DOI] [PubMed] [Google Scholar]
  2. Aho E. L., Murphy G. L., Cannon J. G. Distribution of specific DNA sequences among pathogenic and commensal Neisseria species. Infect Immun. 1987 Apr;55(4):1009–1013. doi: 10.1128/iai.55.4.1009-1013.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black W. J., Schwalbe R. S., Nachamkin I., Cannon J. G. Characterization of Neisseria gonorrhoeae protein II phase variation by use of monoclonal antibodies. Infect Immun. 1984 Aug;45(2):453–457. doi: 10.1128/iai.45.2.453-457.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyle-Vavra S., So M., Seifert H. S. Transcriptional control of gonococcal pilE expression: involvement of an alternate sigma factor. Gene. 1993 Dec 31;137(2):233–236. doi: 10.1016/0378-1119(93)90012-r. [DOI] [PubMed] [Google Scholar]
  5. Feil E., Carpenter G., Spratt B. G. Electrophoretic variation in adenylate kinase of Neisseria meningitidis is due to inter- and intraspecies recombination. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10535–10539. doi: 10.1073/pnas.92.23.10535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forest K. T., Bernstein S. L., Getzoff E. D., So M., Tribbick G., Geysen H. M., Deal C. D., Tainer J. A. Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies. Infect Immun. 1996 Feb;64(2):644–652. doi: 10.1128/iai.64.2.644-652.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fyfe J. A., Carrick C. S., Davies J. K. The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. J Bacteriol. 1995 Jul;177(13):3781–3787. doi: 10.1128/jb.177.13.3781-3787.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodman S. D., Scocca J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6982–6986. doi: 10.1073/pnas.85.18.6982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagblom P., Segal E., Billyard E., So M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature. 1985 May 9;315(6015):156–158. doi: 10.1038/315156a0. [DOI] [PubMed] [Google Scholar]
  10. Howell-Adams B., Wainwright L. A., Seifert H. S. The size and position of heterologous insertions in a silent locus differentially affect pilin recombination in Neisseria gonorrhoeae. Mol Microbiol. 1996 Nov;22(3):509–522. doi: 10.1046/j.1365-2958.1996.00128.x. [DOI] [PubMed] [Google Scholar]
  11. KELLOGG D. S., Jr, PEACOCK W. L., Jr, DEACON W. E., BROWN L., PIRKLE D. I. NEISSERIA GONORRHOEAE. I. VIRULENCE GENETICALLY LINKED TO CLONAL VARIATION. J Bacteriol. 1963 Jun;85:1274–1279. doi: 10.1128/jb.85.6.1274-1279.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keilty S., Rosenberg M. Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem. 1987 May 5;262(13):6389–6395. [PubMed] [Google Scholar]
  13. Maiden M. C. Population genetics of a transformable bacterium: the influence of horizontal genetic exchange on the biology of Neisseria meningitidis. FEMS Microbiol Lett. 1993 Sep 15;112(3):243–250. doi: 10.1111/j.1574-6968.1993.tb06457.x. [DOI] [PubMed] [Google Scholar]
  14. McGee Z. A., Dourmashkin R. R., Gross J. G., Clark J. B., Taylor-Robinson D. Relationship of pili to colonial morphology among pathogenic and nonpathogenic species of Neisseria. Infect Immun. 1977 Feb;15(2):594–600. doi: 10.1128/iai.15.2.594-600.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meyer T. F., Billyard E., Haas R., Storzbach S., So M. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6110–6114. doi: 10.1073/pnas.81.19.6110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nassif X., Lowy J., Stenberg P., O'Gaora P., Ganji A., So M. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol. 1993 May;8(4):719–725. doi: 10.1111/j.1365-2958.1993.tb01615.x. [DOI] [PubMed] [Google Scholar]
  17. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature. 1995 Nov 2;378(6552):32–38. doi: 10.1038/378032a0. [DOI] [PubMed] [Google Scholar]
  18. Perry A. C., Hart C. A., Nicolson I. J., Heckels J. E., Saunders J. R. Inter-strain homology of pilin gene sequences in Neisseria meningitidis isolates that express markedly different antigenic pilus types. J Gen Microbiol. 1987 Jun;133(6):1409–1418. doi: 10.1099/00221287-133-6-1409. [DOI] [PubMed] [Google Scholar]
  19. Perry A. C., Nicolson I. J., Saunders J. R. Neisseria meningitidis C114 contains silent, truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences. J Bacteriol. 1988 Apr;170(4):1691–1697. doi: 10.1128/jb.170.4.1691-1697.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pinner R. W., Spellman P. A., Stephens D. S. Evidence for functionally distinct pili expressed by Neisseria meningitidis. Infect Immun. 1991 Sep;59(9):3169–3175. doi: 10.1128/iai.59.9.3169-3175.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Potts W. J., Saunders J. R. Nucleotide sequence of the structural gene for class I pilin from Neisseria meningitidis: homologies with the pilE locus of Neisseria gonorrhoeae. Mol Microbiol. 1988 Sep;2(5):647–653. doi: 10.1111/j.1365-2958.1988.tb00073.x. [DOI] [PubMed] [Google Scholar]
  22. Riley J., Butler R., Ogilvie D., Finniear R., Jenner D., Powell S., Anand R., Smith J. C., Markham A. F. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 1990 May 25;18(10):2887–2890. doi: 10.1093/nar/18.10.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seifert H. S. Questions about gonococcal pilus phase- and antigenic variation. Mol Microbiol. 1996 Aug;21(3):433–440. doi: 10.1111/j.1365-2958.1996.tb02552.x. [DOI] [PubMed] [Google Scholar]
  25. Stephens D. S., Whitney A. M., Rothbard J., Schoolnik G. K. Pili of Neisseria meningitidis. Analysis of structure and investigation of structural and antigenic relationships to gonococcal pili. J Exp Med. 1985 Jun 1;161(6):1539–1553. doi: 10.1084/jem.161.6.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stephens D. S., Whitney A. M., Schoolnik G. K., Zollinger W. D. Common epitopes of pilin of Neisseria meningitidis. J Infect Dis. 1988 Aug;158(2):332–342. doi: 10.1093/infdis/158.2.332. [DOI] [PubMed] [Google Scholar]
  27. Stimson E., Virji M., Barker S., Panico M., Blench I., Saunders J., Payne G., Moxon E. R., Dell A., Morris H. R. Discovery of a novel protein modification: alpha-glycerophosphate is a substituent of meningococcal pilin. Biochem J. 1996 May 15;316(Pt 1):29–33. doi: 10.1042/bj3160029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stimson E., Virji M., Makepeace K., Dell A., Morris H. R., Payne G., Saunders J. R., Jennings M. P., Barker S., Panico M. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol. 1995 Sep;17(6):1201–1214. doi: 10.1111/j.1365-2958.1995.mmi_17061201.x. [DOI] [PubMed] [Google Scholar]
  29. Strom M. S., Lory S. Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol. 1993;47:565–596. doi: 10.1146/annurev.mi.47.100193.003025. [DOI] [PubMed] [Google Scholar]
  30. Taha M. K., Giorgini D., Nassif X. The pilA regulatory gene modulates the pilus-mediated adhesion of Neisseria meningitidis by controlling the transcription of pilC1. Mol Microbiol. 1996 Mar;19(5):1073–1084. doi: 10.1046/j.1365-2958.1996.448979.x. [DOI] [PubMed] [Google Scholar]
  31. Taha M. K., Giorgini D. Phosphorylation and functional analysis of PilA, a protein involved in the transcriptional regulation of the pilin gene in Neisseria gonorrhoeae. Mol Microbiol. 1995 Feb;15(4):667–677. doi: 10.1111/j.1365-2958.1995.tb02376.x. [DOI] [PubMed] [Google Scholar]
  32. Thöny B., Hennecke H. The -24/-12 promoter comes of age. FEMS Microbiol Rev. 1989 Dec;5(4):341–357. doi: 10.1016/0168-6445(89)90028-4. [DOI] [PubMed] [Google Scholar]
  33. Virji M., Alexandrescu C., Ferguson D. J., Saunders J. R., Moxon E. R. Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol. 1992 May;6(10):1271–1279. doi: 10.1111/j.1365-2958.1992.tb00848.x. [DOI] [PubMed] [Google Scholar]
  34. Virji M., Heckels J. E., Potts W. J., Hart C. A., Saunders J. R. Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp. J Gen Microbiol. 1989 Dec;135(12):3239–3251. doi: 10.1099/00221287-135-12-3239. [DOI] [PubMed] [Google Scholar]
  35. Virji M., Saunders J. R., Sims G., Makepeace K., Maskell D., Ferguson D. J. Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol. 1993 Dec;10(5):1013–1028. doi: 10.1111/j.1365-2958.1993.tb00972.x. [DOI] [PubMed] [Google Scholar]
  36. Wainwright L. A., Pritchard K. H., Seifert H. S. A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol Microbiol. 1994 Jul;13(1):75–87. doi: 10.1111/j.1365-2958.1994.tb00403.x. [DOI] [PubMed] [Google Scholar]
  37. Wistreich G. A., Baker R. F. The presence of fimbriae (pili) in three species of Neisseria. J Gen Microbiol. 1971 Feb;65(2):167–173. doi: 10.1099/00221287-65-2-167. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES