Abstract
OBJECTIVE—To produce tissue engineered cartilage by human articular chondrocytes in vitro for further use in in vivo manipulations for the treatment of cartilage defects. METHODS—Human articular chondrocytes were cultured in 0.5%, 1.0%, and 2.0% of alginate for up to four weeks. The optimal concentration of an alginate matrix for cell replication and for aggrecan synthesis by chondrocytes was determined. DNA content in the different culture conditions was measured after two and four weeks. Aggrecan synthesis rates and accumulation in the surrounding extracellular matrix were assessed by [35S]sulphate incorporation after the same periods of culture. To follow the outgrowth of chondrocytes from the alginate beads, chondrocytes were cultured for four weeks in 0.5 or 1.0% alginate surrounded by 0.25 or 0.5% fibrin gel. DNA content of each culture was measured after different culture periods. Finally, human chondrocytes in 1.0% alginate beads were embedded in 0.5% fibrin gel for eight weeks. Immunohistochemical analysis for aggrecan, type I and II collagen was performed weekly. RESULTS—At two weeks the DNA content in each culture significantly increased in 0.5 and 1.0% alginate cultures in comparison with baseline values. This increase continued until week 4 at the three alginate concentrations. Aggrecan synthesis at two weeks was highest in 0.5 and 1.0% alginate cell cultures. At four weeks aggrecan synthesis rates decreased independently of the alginate concentrations. Aggrecan mainly accumulated in the interterritorial matrix. Proliferation of chondrocytes in alginate and outgrowth of these cells in the surrounding fibrin gel were evident throughout the culture period. The accumulation of aggrecan and type II collagen around the cells, in alginate as well as in fibrin gel, gradually increased over the culture period. Type I collagen appeared after six weeks in alginate and in the surrounding fibrin. CONCLUSION—Human chondrocytes proliferate in this culture system, show an outgrowth into the surrounding fibrin, and synthesise a cartilage-like matrix for up to eight weeks.
Full Text
The Full Text of this article is available as a PDF (304.0 KB).
Figure 1 .

DNA content in each culture from donor 1 (A), 2 (B), and 3 (C) was investigated at day 1, and at two and four weeks. Data are presented as mean values of three cultures; standard deviations and p values are given.
Figure 2 .

Total aggrecan synthesis rates per culture from donor 1 (A), 2 (B) and 3 (C) at two and four weeks in three different concentrations of alginate are given, with the relative amounts of the newly synthesised aggrecans in cell associated matrix (CAM), interterritorial matrix (ITM), and medium related to the total aggrecan synthesis (percentage value in column). Data are presented as mean values of three cultures. p values (0.5% v 1.0%, 1.0% v 2.0%, and 0.5% v 2.0%) at two and four weeks are given. The p values for aggrecan synthesis rates between two and four weeks are 0.27, 0.02, and 0.0003 for donor 1, 0.0004, 0.0006, and 0.006 for donor 2, and 0.31, 0.10, and 0.04 for donor 3 in 0.5%, 1.0%, and 2.0% alginate cultures, respectively.
Figure 3 .

Total aggrecan synthesis rates for each cell from donor 1 (A), 2 (B), and 3 (C) at two and four weeks in three different concentrations of alginate are given. The relative amounts of the newly synthesised aggrecans in cell associated matrix (CAM), interterritorial matrix (ITM), and medium related to the total aggrecan synthesis rates for each cell are identical to those in fig 2. Data are presented as mean values of three cultures. p Values (0.5% v 1.0%, 1.0% v 2.0%, and 0.5% v 2.0%) at two and four weeks are given. The p values for aggrecan synthesis rates between two and four weeks are <0.05 in all alginate concentrations for the three donors.
Figure 4 .


Immunohistochemistry of chondrocytes cultured in alginate surrounded by fibrin gel. Staining of aggrecan, type II collagen, and type I collagen in alginate and fibrin at three days (A), two weeks (B), four weeks (C), and eight weeks (D). Magnification ×100.
Figure 5 .

Paraffin section of chondrocytes cultured in alginate beads for two weeks and stained for aggrecan. A well defined cell associated matrix with newly synthesised aggrecans can be seen, as well as a slighter staining of the intercellular matrix. Magnification ×100.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atala A., Kim W., Paige K. T., Vacanti C. A., Retik A. B. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol. 1994 Aug;152(2 Pt 2):641–644. doi: 10.1016/s0022-5347(17)32671-x. [DOI] [PubMed] [Google Scholar]
- Beaver R. J., Mahomed M., Backstein D., Davis A., Zukor D. J., Gross A. E. Fresh osteochondral allografts for post-traumatic defects in the knee. A survivorship analysis. J Bone Joint Surg Br. 1992 Jan;74(1):105–110. doi: 10.1302/0301-620X.74B1.1732235. [DOI] [PubMed] [Google Scholar]
- Benedetti L., Cortivo R., Berti T., Berti A., Pea F., Mazzo M., Moras M., Abatangelo G. Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials. 1993 Dec;14(15):1154–1160. doi: 10.1016/0142-9612(93)90160-4. [DOI] [PubMed] [Google Scholar]
- Brittberg M., Faxén E., Peterson L. Carbon fiber scaffolds in the treatment of early knee osteoarthritis. A prospective 4-year followup of 37 patients. Clin Orthop Relat Res. 1994 Oct;(307):155–164. [PubMed] [Google Scholar]
- Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O., Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 Oct 6;331(14):889–895. doi: 10.1056/NEJM199410063311401. [DOI] [PubMed] [Google Scholar]
- Brittberg M., Nilsson A., Lindahl A., Ohlsson C., Peterson L. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996 May;(326):270–283. doi: 10.1097/00003086-199605000-00034. [DOI] [PubMed] [Google Scholar]
- Caplan A. I., Elyaderani M., Mochizuki Y., Wakitani S., Goldberg V. M. Principles of cartilage repair and regeneration. Clin Orthop Relat Res. 1997 Sep;(342):254–269. [PubMed] [Google Scholar]
- Freed L. E., Marquis J. C., Nohria A., Emmanual J., Mikos A. G., Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993 Jan;27(1):11–23. doi: 10.1002/jbm.820270104. [DOI] [PubMed] [Google Scholar]
- Gannon J. M., Walker G., Fischer M., Carpenter R., Thompson R. C., Jr, Oegema T. R., Jr Localization of type X collagen in canine growth plate and adult canine articular cartilage. J Orthop Res. 1991 Jul;9(4):485–494. doi: 10.1002/jor.1100090404. [DOI] [PubMed] [Google Scholar]
- Green W. T., Jr Behavior of articular chondrocytes in cell culture. Clin Orthop Relat Res. 1971 Mar-Apr;75:248–260. doi: 10.1097/00003086-197103000-00030. [DOI] [PubMed] [Google Scholar]
- Guo J. F., Jourdian G. W., MacCallum D. K. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res. 1989;19(2-4):277–297. doi: 10.3109/03008208909043901. [DOI] [PubMed] [Google Scholar]
- Hangody L., Kish G., Kárpáti Z., Szerb I., Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc. 1997;5(4):262–267. doi: 10.1007/s001670050061. [DOI] [PubMed] [Google Scholar]
- Homminga G. N., Bulstra S. K., Bouwmeester P. S., van der Linden A. J. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br. 1990 Nov;72(6):1003–1007. doi: 10.1302/0301-620X.72B6.2246280. [DOI] [PubMed] [Google Scholar]
- Homminga G. N., Bulstra S. K., Kuijer R., van der Linden A. J. Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand. 1991 Oct;62(5):415–418. doi: 10.3109/17453679108996635. [DOI] [PubMed] [Google Scholar]
- Homminga G. N., Buma P., Koot H. W., van der Kraan P. M., van den Berg W. B. Chondrocyte behavior in fibrin glue in vitro. Acta Orthop Scand. 1993 Aug;64(4):441–445. doi: 10.3109/17453679308993663. [DOI] [PubMed] [Google Scholar]
- Hunziker E. B., Rosenberg L. C. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 1996 May;78(5):721–733. doi: 10.2106/00004623-199605000-00012. [DOI] [PubMed] [Google Scholar]
- Häuselmann H. J., Aydelotte M. B., Schumacher B. L., Kuettner K. E., Gitelis S. H., Thonar E. J. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix. 1992 Apr;12(2):116–129. doi: 10.1016/s0934-8832(11)80053-3. [DOI] [PubMed] [Google Scholar]
- Häuselmann H. J., Fernandes R. J., Mok S. S., Schmid T. M., Block J. A., Aydelotte M. B., Kuettner K. E., Thonar E. J. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994 Jan;107(Pt 1):17–27. doi: 10.1242/jcs.107.1.17. [DOI] [PubMed] [Google Scholar]
- Johnson L. L. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2(1):54–69. doi: 10.1016/s0749-8063(86)80012-3. [DOI] [PubMed] [Google Scholar]
- Kawamura S., Wakitani S., Kimura T., Maeda A., Caplan A. I., Shino K., Ochi T. Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand. 1998 Feb;69(1):56–62. doi: 10.3109/17453679809002358. [DOI] [PubMed] [Google Scholar]
- Keller J., Andreassen T. T., Joyce F., Knudsen V. E., Jørgensen P. H., Lucht U. Fixation of osteochondral fractures. Fibrin sealant tested in dogs. Acta Orthop Scand. 1985 Aug;56(4):323–326. doi: 10.3109/17453678508993025. [DOI] [PubMed] [Google Scholar]
- Klein C. P., van der Lubbe H. B., de Groot K. A plastic composite of alginate with calcium phosphate granulate as implant material: an in vivo study. Biomaterials. 1987 Jul;8(4):308–310. [PubMed] [Google Scholar]
- Kuettner K. E., Pauli B. U., Gall G., Memoli V. A., Schenk R. K. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. J Cell Biol. 1982 Jun;93(3):743–750. doi: 10.1083/jcb.93.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
- Mankin H. J., Doppelt S., Tomford W. Clinical experience with allograft implantation. The first ten years. Clin Orthop Relat Res. 1983 Apr;(174):69–86. [PubMed] [Google Scholar]
- Mankin H. J. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med. 1974 Dec 12;291(24):1285–1292. doi: 10.1056/NEJM197412122912406. [DOI] [PubMed] [Google Scholar]
- Marijnissen W. J., van Osch G. J., Aigner J., Verwoerd-Verhoef H. L., Verhaar J. A. Tissue-engineered cartilage using serially passaged articular chondrocytes. Chondrocytes in alginate, combined in vivo with a synthetic (E210) or biologic biodegradable carrier (DBM). Biomaterials. 2000 Mar;21(6):571–580. doi: 10.1016/s0142-9612(99)00218-5. [DOI] [PubMed] [Google Scholar]
- Mok S. S., Masuda K., Häuselmann H. J., Aydelotte M. B., Thonar E. J. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem. 1994 Dec 30;269(52):33021–33027. [PubMed] [Google Scholar]
- O'Driscoll S. W., Keeley F. W., Salter R. B. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1986 Sep;68(7):1017–1035. [PubMed] [Google Scholar]
- Orr T. E., Patel A. M., Wong B., Hatzigiannis G. P., Minas T., Spector M. Attachment of periosteal grafts to articular cartilage with fibrin sealant. J Biomed Mater Res. 1999 Mar 5;44(3):308–313. doi: 10.1002/(sici)1097-4636(19990305)44:3<308::aid-jbm9>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Paige K. T., Cima L. G., Yaremchuk M. J., Schloo B. L., Vacanti J. P., Vacanti C. A. De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg. 1996 Jan;97(1):168–180. doi: 10.1097/00006534-199601000-00027. [DOI] [PubMed] [Google Scholar]
- Pearson J. P., Mason R. M. The stability of bovine nasal cartilage proteoglycans during isolation and storage. Biochim Biophys Acta. 1977 Jun 23;498(1):176–188. doi: 10.1016/0304-4165(77)90098-8. [DOI] [PubMed] [Google Scholar]
- Perka C., Spitzer R. S., Lindenhayn K., Sittinger M., Schultz O. Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res. 2000 Mar 5;49(3):305–311. doi: 10.1002/(sici)1097-4636(20000305)49:3<305::aid-jbm2>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
- Petit B., Masuda K., D'Souza A. L., Otten L., Pietryla D., Hartmann D. J., Morris N. P., Uebelhart D., Schmid T. M., Thonar E. J. Characterization of crosslinked collagens synthesized by mature articular chondrocytes cultured in alginate beads: comparison of two distinct matrix compartments. Exp Cell Res. 1996 May 25;225(1):151–161. doi: 10.1006/excr.1996.0166. [DOI] [PubMed] [Google Scholar]
- Rotter N., Aigner J., Naumann A., Planck H., Hammer C., Burmester G., Sittinger M. Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage. J Biomed Mater Res. 1998 Dec 5;42(3):347–356. doi: 10.1002/(sici)1097-4636(19981205)42:3<347::aid-jbm2>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Schuman L., Buma P., Versleyen D., de Man B., van der Kraan P. M., van den Berg W. B., Homminga G. N. Chondrocyte behaviour within different types of collagen gel in vitro. Biomaterials. 1995 Jul;16(10):809–814. doi: 10.1016/0142-9612(95)99644-2. [DOI] [PubMed] [Google Scholar]
- Shapiro F., Koide S., Glimcher M. J. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993 Apr;75(4):532–553. doi: 10.2106/00004623-199304000-00009. [DOI] [PubMed] [Google Scholar]
- Silverman R. P., Passaretti D., Huang W., Randolph M. A., Yaremchuk M. J. Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg. 1999 Jun;103(7):1809–1818. doi: 10.1097/00006534-199906000-00001. [DOI] [PubMed] [Google Scholar]
- Silverman R. P., Passaretti D., Huang W., Randolph M. A., Yaremchuk M. J. Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg. 1999 Jun;103(7):1809–1818. doi: 10.1097/00006534-199906000-00001. [DOI] [PubMed] [Google Scholar]
- Sims C. D., Butler P. E., Cao Y. L., Casanova R., Randolph M. A., Black A., Vacanti C. A., Yaremchuk M. J. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg. 1998 May;101(6):1580–1585. doi: 10.1097/00006534-199805000-00022. [DOI] [PubMed] [Google Scholar]
- Solchaga L. A., Dennis J. E., Goldberg V. M., Caplan A. I. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res. 1999 Mar;17(2):205–213. doi: 10.1002/jor.1100170209. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Tanihara M., Ohnishi K., Suzuki K., Endo K., Nishimura Y. Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci Lett. 1999 Jan 8;259(2):75–78. doi: 10.1016/s0304-3940(98)00924-0. [DOI] [PubMed] [Google Scholar]
- Verbruggen G., Cornelissen M., Almqvist K. F., Wang L., Elewaut D., Broddelez C., de Ridder L., Veys E. M. Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage. 2000 May;8(3):170–179. doi: 10.1053/joca.1999.0287. [DOI] [PubMed] [Google Scholar]
- Verbruggen G., Malfait A. M., Veys E. M., Gyselbrecht L., Lambert J., Almqvist K. F. Influence of interferon-gamma on isolated chondrocytes from human articular cartilage. Dose dependent inhibition of cell proliferation and proteoglycan synthesis. J Rheumatol. 1993 Jun;20(6):1020–1026. [PubMed] [Google Scholar]
- Wakitani S., Kimura T., Hirooka A., Ochi T., Yoneda M., Yasui N., Owaki H., Ono K. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br. 1989 Jan;71(1):74–80. doi: 10.1302/0301-620X.71B1.2915011. [DOI] [PubMed] [Google Scholar]
- van Susante J. L., Buma P., Schuman L., Homminga G. N., van den Berg W. B., Veth R. P. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials. 1999 Jul;20(13):1167–1175. doi: 10.1016/s0142-9612(97)00190-7. [DOI] [PubMed] [Google Scholar]
- van Susante J. L., Buma P., van Osch G. J., Versleyen D., van der Kraan P. M., van der Berg W. B., Homminga G. N. Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand. 1995 Dec;66(6):549–556. doi: 10.3109/17453679509002314. [DOI] [PubMed] [Google Scholar]

