Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jul;65(7):2732–2739. doi: 10.1128/iai.65.7.2732-2739.1997

Cytostatic and cytotoxic effects of activated macrophages and nitric oxide donors on Brugia malayi.

G R Thomas 1, M McCrossan 1, M E Selkirk 1
PMCID: PMC175385  PMID: 9199443

Abstract

The susceptibility of Brugia malayi microfilariae and adults to injury by the murine macrophage cell line J774 activated with gamma interferon and bacterial lipopolysaccharide has been examined in vitro. Parasites of both stages showed a decline in viability over 48 h of coculture with activated macrophages, assessed by their capacity to reduce the tetrazolium salt 3-[4,5-diethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), although adult parasites were more resistant than microfilariae. Removal of parasites to cell-free medium following exposure to activated macrophages for up to 48 h resulted in partial recovery of their capacity to reduce MTT, suggesting that the effects were primarily cytostatic. However, prolonged exposure to activated J774 cells for 72 h resulted in parasite death. Addition of the nitric oxide synthase inhibitor L-NMMA (N(G)-monomethyl-L-arginine monoacetate) indicated that nitric oxide derivatives were responsible for cytostasis and ultimate toxicity. The toxicity of nitric oxide derivatives was confirmed by coincubation of parasites with chemical donors, although far higher concentrations were required than those generated by activated J774 cells, implying additional complexity in macrophage-mediated cytotoxicity. These experiments further suggested that peroxynitrite or its by-products were more potently damaging to filariae than nitric oxide per se. Examination of ultrastructural changes on exposure of parasites to activated macrophages or donors of nitric oxide indicated that hypodermal mitochondria were highly vacuolated, with less prominent cristae. The data are discussed with reference to immunity to lymphatic filariae and their mechanisms of energy generation.

Full Text

The Full Text of this article is available as a PDF (617.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. F., Oswald I. P., Caspar P., Hieny S., Keefer L., Sher A., James S. L. Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infect Immun. 1997 Jan;65(1):219–226. doi: 10.1128/iai.65.1.219-226.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amano F., Akamatsu Y. A lipopolysaccharide (LPS)-resistant mutant isolated from a macrophagelike cell line, J774.1, exhibits an altered activated-macrophage phenotype in response to LPS. Infect Immun. 1991 Jun;59(6):2166–2174. doi: 10.1128/iai.59.6.2166-2174.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Assreuy J., Cunha F. Q., Epperlein M., Noronha-Dutra A., O'Donnell C. A., Liew F. Y., Moncada S. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol. 1994 Mar;24(3):672–676. doi: 10.1002/eji.1830240328. [DOI] [PubMed] [Google Scholar]
  4. Baldwin C. I., de Medeiros F., Denham D. A. IgE responses in cats infected with Brugia pahangi. Parasite Immunol. 1993 May;15(5):291–296. doi: 10.1111/j.1365-3024.1993.tb00612.x. [DOI] [PubMed] [Google Scholar]
  5. Bancroft A. J., Grencis R. K., Else K. J., Devaney E. The role of CD4 cells in protective immunity to Brugia pahangi. Parasite Immunol. 1994 Jul;16(7):385–387. doi: 10.1111/j.1365-3024.1994.tb00364.x. [DOI] [PubMed] [Google Scholar]
  6. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brunelli L., Crow J. P., Beckman J. S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys. 1995 Jan 10;316(1):327–334. doi: 10.1006/abbi.1995.1044. [DOI] [PubMed] [Google Scholar]
  8. Carreras M. C., Pargament G. A., Catz S. D., Poderoso J. J., Boveris A. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 1994 Mar 14;341(1):65–68. doi: 10.1016/0014-5793(94)80241-6. [DOI] [PubMed] [Google Scholar]
  9. Castro L., Rodriguez M., Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem. 1994 Nov 25;269(47):29409–29415. [PubMed] [Google Scholar]
  10. Comley J. C., Townson S., Rees M. J., Dobinson A. The further application of MTT-formazan colorimetry to studies on filarial worm viability. Trop Med Parasitol. 1989 Sep;40(3):311–316. [PubMed] [Google Scholar]
  11. Cookson E., Blaxter M. L., Selkirk M. E. Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homolog of glutathione peroxidase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5837–5841. doi: 10.1073/pnas.89.13.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Denham D. A., McGreevy P. B., Suswillo R. R., Rogers R. The resistance to re-infection of cats repeatedly inoculated with infective larvae of Brugia pahangi. Parasitology. 1983 Feb;86(Pt 1):11–18. doi: 10.1017/s0031182000057127. [DOI] [PubMed] [Google Scholar]
  13. Denicola A., Rubbo H., Rodríguez D., Radi R. Peroxynitrite-mediated cytotoxicity to Trypanosoma cruzi. Arch Biochem Biophys. 1993 Jul;304(1):279–286. doi: 10.1006/abbi.1993.1350. [DOI] [PubMed] [Google Scholar]
  14. Dimock K. A., Eberhard M. L., Lammie P. J. Th1-like antifilarial immune responses predominate in antigen-negative persons. Infect Immun. 1996 Aug;64(8):2962–2967. doi: 10.1128/iai.64.8.2962-2967.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Granger D. L., Lehninger A. L. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J Cell Biol. 1982 Nov;95(2 Pt 1):527–535. doi: 10.1083/jcb.95.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Granger D. L., Taintor R. R., Cook J. L., Hibbs J. B., Jr Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J Clin Invest. 1980 Feb;65(2):357–370. doi: 10.1172/JCI109679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gusmão R. D., Stanley A. M., Ottesen E. A. Brugia pahangi: immunologic evaluation of the differential susceptibility of filarial infection in inbred Lewis rats. Exp Parasitol. 1981 Aug;52(1):147–159. doi: 10.1016/0014-4894(81)90070-9. [DOI] [PubMed] [Google Scholar]
  18. Hogg N., Darley-Usmar V. M., Wilson M. T., Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 1992 Jan 15;281(Pt 2):419–424. doi: 10.1042/bj2810419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ischiropoulos H., Zhu L., Beckman J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992 Nov 1;298(2):446–451. doi: 10.1016/0003-9861(92)90433-w. [DOI] [PubMed] [Google Scholar]
  20. King C. L., Mahanty S., Kumaraswami V., Abrams J. S., Regunathan J., Jayaraman K., Ottesen E. A., Nutman T. B. Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. J Clin Invest. 1993 Oct;92(4):1667–1673. doi: 10.1172/JCI116752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kurniawan A., Yazdanbakhsh M., van Ree R., Aalberse R., Selkirk M. E., Partono F., Maizels R. M. Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. J Immunol. 1993 May 1;150(9):3941–3950. [PubMed] [Google Scholar]
  22. Lammie P. J., Hightower A. W., Richards F. O., Jr, Bryan R. T., Spencer H. C., McNeeley D. F., McNeeley M. B., Eberhard M. L. Alterations in filarial antigen-specific immunologic reactivity following treatment with ivermectin and diethylcarbamazine. Am J Trop Med Hyg. 1992 Mar;46(3):292–295. doi: 10.4269/ajtmh.1992.46.292. [DOI] [PubMed] [Google Scholar]
  23. Lawrence R. A. Lymphatic filariasis: what mice can tell us. Parasitol Today. 1996 Jul;12(7):267–271. doi: 10.1016/0169-4758(96)10025-9. [DOI] [PubMed] [Google Scholar]
  24. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  25. Maizels R. M., Bundy D. A., Selkirk M. E., Smith D. F., Anderson R. M. Immunological modulation and evasion by helminth parasites in human populations. Nature. 1993 Oct 28;365(6449):797–805. doi: 10.1038/365797a0. [DOI] [PubMed] [Google Scholar]
  26. Maizels R. M., Sartono E., Kurniawan A., Partono F., Selkirk M. E., Yazdanbakhsh M. T-cell activation and the balance of antibody isotypes in human lymphatic filariasis. Parasitol Today. 1995 Feb;11(2):50–56. doi: 10.1016/0169-4758(95)80116-2. [DOI] [PubMed] [Google Scholar]
  27. McLaren D. J., James S. L. Ultrastructural studies of the killing of schistosomula of Schistosoma mansoni by activated macrophages in vitro. Parasite Immunol. 1985 May;7(3):315–331. doi: 10.1111/j.1365-3024.1985.tb00079.x. [DOI] [PubMed] [Google Scholar]
  28. Mendis A. H., Townson S. Evidence for the occurrence of respiratory electron transport in adult Brugia pahangi and Dipetalonema viteae. Mol Biochem Parasitol. 1985 Mar;14(3):337–354. doi: 10.1016/0166-6851(85)90061-1. [DOI] [PubMed] [Google Scholar]
  29. Middleton K. R., Saz H. J. Comparative utilization of pyruvate by Brugia pahangi, Dipetalonema viteae, and Litomosoides carinii. J Parasitol. 1979 Feb;65(1):1–7. [PubMed] [Google Scholar]
  30. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  31. Ottesen E. A. The Wellcome Trust Lecture. Infection and disease in lymphatic filariasis: an immunological perspective. Parasitology. 1992;104 (Suppl):S71–S79. doi: 10.1017/s0031182000075259. [DOI] [PubMed] [Google Scholar]
  32. Ou X., Tang L., McCrossan M., Henkle-Dührsen K., Selkirk M. E. Brugia malayi: localisation and differential expression of extracellular and cytoplasmic CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol. 1995 May;80(3):515–529. doi: 10.1006/expr.1995.1064. [DOI] [PubMed] [Google Scholar]
  33. Ou X., Thomas G. R., Chacón M. R., Tang L., Selkirk M. E. Brugia malayi: differential susceptibility to and metabolism of hydrogen peroxide in adults and microfilariae. Exp Parasitol. 1995 May;80(3):530–540. doi: 10.1006/expr.1995.1065. [DOI] [PubMed] [Google Scholar]
  34. Pearce E. J., James S. L. Post lung-stage schistosomula of Schistosoma mansoni exhibit transient susceptibility to macrophage-mediated cytotoxicity in vitro that may relate to late phase killing in vivo. Parasite Immunol. 1986 Sep;8(5):513–527. doi: 10.1111/j.1365-3024.1986.tb00866.x. [DOI] [PubMed] [Google Scholar]
  35. Piessens W. F., Ratiwayanto S., Piessens P. W., Tuti S., McGreevy P. B., Darwis F., Palmieri J. R., Koiman I., Dennis D. T. Effect of treatment with diethylcarbamazine on immune responses to filarial antigens in patients infected with Brugia malayi. Acta Trop. 1981 Sep;38(3):227–234. [PubMed] [Google Scholar]
  36. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  37. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  38. Radi R., Rodriguez M., Castro L., Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys. 1994 Jan;308(1):89–95. doi: 10.1006/abbi.1994.1013. [DOI] [PubMed] [Google Scholar]
  39. Rajan T. V., Porte P., Yates J. A., Keefer L., Shultz L. D. Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infect Immun. 1996 Aug;64(8):3351–3353. doi: 10.1128/iai.64.8.3351-3353.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rew R. S., Saz H. J. The carbohydrate metabolism of Brugia pahangi microfilariae. J Parasitol. 1977 Feb;63(1):123–129. [PubMed] [Google Scholar]
  41. Sartono E., Kruize Y. C., Kurniawan A., van der Meide P. H., Partono F., Maizels R. M., Yazdanbakhsh M. Elevated cellular immune responses and interferon-gamma release after long-term diethylcarbamazine treatment of patients with human lymphatic filariasis. J Infect Dis. 1995 Jun;171(6):1683–1687. doi: 10.1093/infdis/171.6.1683. [DOI] [PubMed] [Google Scholar]
  42. Smith V. P., Selkirk M. E., Gounaris K. Identification and composition of lipid classes in surface and somatic preparations of adult Brugia malayi. Mol Biochem Parasitol. 1996 Jun;78(1-2):105–116. doi: 10.1016/s0166-6851(96)02615-1. [DOI] [PubMed] [Google Scholar]
  43. Suswillo R. R., Owen D. G., Denham D. A. Infections of Brugia pahangi in conventional and nude (athymic) mice. Acta Trop. 1980 Dec;37(4):327–335. [PubMed] [Google Scholar]
  44. Szabó C., Day B. J., Salzman A. L. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 1996 Feb 26;381(1-2):82–86. doi: 10.1016/0014-5793(96)00087-7. [DOI] [PubMed] [Google Scholar]
  45. Szabó C., Salzman A. L. Endogenous peroxynitrite is involved in the inhibition of mitochondrial respiration in immuno-stimulated J774.2 macrophages. Biochem Biophys Res Commun. 1995 Apr 17;209(2):739–743. doi: 10.1006/bbrc.1995.1561. [DOI] [PubMed] [Google Scholar]
  46. Taylor M. J., Cross H. F., Mohammed A. A., Trees A. J., Bianco A. E. Susceptibility of Brugia malayi and Onchocerca lienalis microfilariae to nitric oxide and hydrogen peroxide in cell-free culture and from IFN gamma-activated macrophages. Parasitology. 1996 Mar;112(Pt 3):315–322. doi: 10.1017/s0031182000065835. [DOI] [PubMed] [Google Scholar]
  47. Vazquez-Torres A., Jones-Carson J., Balish E. Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect Immun. 1996 Aug;64(8):3127–3133. doi: 10.1128/iai.64.8.3127-3133.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vickery A. C., Vincent A. L., Sodeman W. A., Jr Effect of immune reconstitution on resistance to Brugia pahangi in congenitally athymic nude mice. J Parasitol. 1983 Jun;69(3):478–485. [PubMed] [Google Scholar]
  49. Vincent A. L., Ash L. R., Frommes S. P. The ultrastructure of adult Brugia malayi (Brug, 1927) (Nematoda: Filarioidea). J Parasitol. 1975 Jun;61(3):499–512. [PubMed] [Google Scholar]
  50. Wang E. J., Saz H. J. Comparative biochemical studies of Litomosoides carinii, Dipetalonema viteae, and Brugia pahangi adults. J Parasitol. 1974 Apr;60(2):316–321. [PubMed] [Google Scholar]
  51. Zembala M., Siedlar M., Marcinkiewicz J., Pryjma J. Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide. Eur J Immunol. 1994 Feb;24(2):435–439. doi: 10.1002/eji.1830240225. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES