Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jul;65(7):2821–2828. doi: 10.1128/iai.65.7.2821-2828.1997

Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin.

G Douce 1, M Fontana 1, M Pizza 1, R Rappuoli 1, G Dougan 1
PMCID: PMC175397  PMID: 9199455

Abstract

Genetically modified derivatives of cholera toxin (CT), harboring a single amino acid substitution in and around the NAD binding cleft of the A subunit, were isolated following site-directed mutagenesis of the ctxA gene. Two mutants of CT, designated CTS106 (with a proline-to-serine change at position 106) and CTK63 (with a serine-to-lysine change at position 63), were found to have substantially reduced ADP-ribosyltransferase activity and toxicity; CTK63 was completely nontoxic in all assays, whereas CTS106 was 10(4) times less toxic than wild-type CT. The mucosal adjuvanticity and immunogenicity of derivatives of CT were assessed by intranasal immunization of mice, with either ovalbumin or fragment C of tetanus toxin as a bystander antigen. Mice immunized with wild-type CT produced both local (immunoglobulin A in mucosal washes) and systemic immune responses to both CT and bystander antigens. CTS106 showed good local and systemic responses to bystander proteins and to itself. Interestingly, mice immunized with the nontoxic derivative of CT, CTK63, generated weak immune responses to the bystander antigens which were similar to those achieved when CT B subunit was used as an adjuvant. In parallel experiments, an equivalent nontoxic mutant of the Escherichia coli heat-labile enterotoxin, LTK63 (with a serine-to-lysine change at position 63), was tested (9). In contrast to CTK63, LTK63 was found to be more immunogenic and a better intranasal adjuvant than recombinant heat-labile enterotoxin B subunit or CTK63. This information, together with data on immunoglobulin subclass responses, suggests that although highly homologous, CT and heat-labile enterotoxin should not be considered biologically identical in terms of their ability to act as intranasal adjuvants.

Full Text

The Full Text of this article is available as a PDF (245.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bromander A., Holmgren J., Lycke N. Cholera toxin stimulates IL-1 production and enhances antigen presentation by macrophages in vitro. J Immunol. 1991 May 1;146(9):2908–2914. [PubMed] [Google Scholar]
  2. Clements J. D., Hartzog N. M., Lyon F. L. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine. 1988 Jun;6(3):269–277. doi: 10.1016/0264-410x(88)90223-x. [DOI] [PubMed] [Google Scholar]
  3. Cropley I., Douce G., Roberts M., Chatfield S., Pizza M., Marsili I., Rappuoli R., Dougan G. Mucosal and systemic immunogenicity of a recombinant, non-ADP-ribosylating pertussis toxin: effects of formaldehyde treatment. Vaccine. 1995 Dec;13(17):1643–1648. doi: 10.1016/0264-410x(95)00134-m. [DOI] [PubMed] [Google Scholar]
  4. Debard N., Buzoni-Gatel D., Bout D. Intranasal immunization with SAG1 protein of Toxoplasma gondii in association with cholera toxin dramatically reduces development of cerebral cysts after oral infection. Infect Immun. 1996 Jun;64(6):2158–2166. doi: 10.1128/iai.64.6.2158-2166.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Di Tommaso A., Saletti G., Pizza M., Rappuoli R., Dougan G., Abrignani S., Douce G., De Magistris M. T. Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infect Immun. 1996 Mar;64(3):974–979. doi: 10.1128/iai.64.3.974-979.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickinson B. L., Clements J. D. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun. 1995 May;63(5):1617–1623. doi: 10.1128/iai.63.5.1617-1623.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douce G., Turcotte C., Cropley I., Roberts M., Pizza M., Domenghini M., Rappuoli R., Dougan G. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1644–1648. doi: 10.1073/pnas.92.5.1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elson C. O., Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol. 1984 Jun;132(6):2736–2741. [PubMed] [Google Scholar]
  9. Fontana M. R., Manetti R., Giannelli V., Magagnoli C., Marchini A., Olivieri R., Domenighini M., Rappuoli R., Pizza M. Construction of nontoxic derivatives of cholera toxin and characterization of the immunological response against the A subunit. Infect Immun. 1995 Jun;63(6):2356–2360. doi: 10.1128/iai.63.6.2356-2360.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giannelli V., Fontana M. R., Giuliani M. M., Guangcai D., Rappuoli R., Pizza M. Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop. Infect Immun. 1997 Jan;65(1):331–334. doi: 10.1128/iai.65.1.331-334.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmgren J., Fredman P., Lindblad M., Svennerholm A. M., Svennerholm L. Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infect Immun. 1982 Nov;38(2):424–433. doi: 10.1128/iai.38.2.424-433.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hörnquist E., Grdic D., Mak T., Lycke N. CD8-deficient mice exhibit augmented mucosal immune responses and intact adjuvant effects to cholera toxin. Immunology. 1996 Feb;87(2):220–229. doi: 10.1046/j.1365-2567.1996.473536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jackson R. J., Fujihashi K., Xu-Amano J., Kiyono H., Elson C. O., McGhee J. R. Optimizing oral vaccines: induction of systemic and mucosal B-cell and antibody responses to tetanus toxoid by use of cholera toxin as an adjuvant. Infect Immun. 1993 Oct;61(10):4272–4279. doi: 10.1128/iai.61.10.4272-4279.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee A., Chen M. Successful immunization against gastric infection with Helicobacter species: use of a cholera toxin B-subunit-whole-cell vaccine. Infect Immun. 1994 Aug;62(8):3594–3597. doi: 10.1128/iai.62.8.3594-3597.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levine M. M., Kaper J. B., Black R. E., Clements M. L. New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol Rev. 1983 Dec;47(4):510–550. doi: 10.1128/mr.47.4.510-550.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lycke N. Y. Cholera toxin promotes B cell isotype switching by two different mechanisms. cAMP induction augments germ-line Ig H-chain RNA transcripts whereas membrane ganglioside GM1-receptor binding enhances later events in differentiation. J Immunol. 1993 Jun 1;150(11):4810–4821. [PubMed] [Google Scholar]
  17. Lycke N., Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology. 1986 Oct;59(2):301–308. [PMC free article] [PubMed] [Google Scholar]
  18. Lycke N., Tsuji T., Holmgren J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur J Immunol. 1992 Sep;22(9):2277–2281. doi: 10.1002/eji.1830220915. [DOI] [PubMed] [Google Scholar]
  19. Magagnoli C., Manetti R., Fontana M. R., Giannelli V., Giuliani M. M., Rappuoli R., Pizza M. Mutations in the A subunit affect yield, stability, and protease sensitivity of nontoxic derivatives of heat-labile enterotoxin. Infect Immun. 1996 Dec;64(12):5434–5438. doi: 10.1128/iai.64.12.5434-5438.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marchetti M., Aricò B., Burroni D., Figura N., Rappuoli R., Ghiara P. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science. 1995 Mar 17;267(5204):1655–1658. doi: 10.1126/science.7886456. [DOI] [PubMed] [Google Scholar]
  21. Marinaro M., Staats H. F., Hiroi T., Jackson R. J., Coste M., Boyaka P. N., Okahashi N., Yamamoto M., Kiyono H., Bluethmann H. Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. J Immunol. 1995 Nov 15;155(10):4621–4629. [PubMed] [Google Scholar]
  22. Nakagawa I., Takahashi I., Kiyono H., McGhee J. R., Hamada S. Oral immunization with the B subunit of the heat-labile enterotoxin of Escherichia coli induces early Th1 and late Th2 cytokine expression in Peyer's patches. J Infect Dis. 1996 Jun;173(6):1428–1436. doi: 10.1093/infdis/173.6.1428. [DOI] [PubMed] [Google Scholar]
  23. Pizza M., Domenighini M., Hol W., Giannelli V., Fontana M. R., Giuliani M. M., Magagnoli C., Peppoloni S., Manetti R., Rappuoli R. Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis. Mol Microbiol. 1994 Oct;14(1):51–60. doi: 10.1111/j.1365-2958.1994.tb01266.x. [DOI] [PubMed] [Google Scholar]
  24. Pizza M., Fontana M. R., Giuliani M. M., Domenighini M., Magagnoli C., Giannelli V., Nucci D., Hol W., Manetti R., Rappuoli R. A genetically detoxified derivative of heat-labile Escherichia coli enterotoxin induces neutralizing antibodies against the A subunit. J Exp Med. 1994 Dec 1;180(6):2147–2153. doi: 10.1084/jem.180.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roberts M., Bacon A., Rappuoli R., Pizza M., Cropley I., Douce G., Dougan G., Marinaro M., McGhee J., Chatfield S. A mutant pertussis toxin molecule that lacks ADP-ribosyltransferase activity, PT-9K/129G, is an effective mucosal adjuvant for intranasally delivered proteins. Infect Immun. 1995 Jun;63(6):2100–2108. doi: 10.1128/iai.63.6.2100-2108.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rollwagen F. M., Pacheco N. D., Clements J. D., Pavlovskis O., Rollins D. M., Walker R. I. Killed Campylobacter elicits immune response and protection when administered with an oral adjuvant. Vaccine. 1993 Oct;11(13):1316–1320. doi: 10.1016/0264-410x(93)90101-3. [DOI] [PubMed] [Google Scholar]
  27. Sixma T. K., Kalk K. H., van Zanten B. A., Dauter Z., Kingma J., Witholt B., Hol W. G. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol. 1993 Apr 5;230(3):890–918. doi: 10.1006/jmbi.1993.1209. [DOI] [PubMed] [Google Scholar]
  28. Sixma T. K., Pronk S. E., Kalk K. H., Wartna E. S., van Zanten B. A., Witholt B., Hol W. G. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature. 1991 May 30;351(6325):371–377. doi: 10.1038/351371a0. [DOI] [PubMed] [Google Scholar]
  29. Spangler B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev. 1992 Dec;56(4):622–647. doi: 10.1128/mr.56.4.622-647.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spicer E. K., Kavanaugh W. M., Dallas W. S., Falkow S., Konigsberg W. H., Schafer D. E. Sequence homologies between A subunits of Escherichia coli and Vibrio cholerae enterotoxins. Proc Natl Acad Sci U S A. 1981 Jan;78(1):50–54. doi: 10.1073/pnas.78.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sugii S., Tsuji T. Binding specificities of heat-labile enterotoxins isolated from porcine and human enterotoxigenic Escherichia coli for different gangliosides. Can J Microbiol. 1989 Jun;35(6):670–673. doi: 10.1139/m89-109. [DOI] [PubMed] [Google Scholar]
  32. Sun J. B., Holmgren J., Czerkinsky C. Cholera toxin B subunit: an efficient transmucosal carrier-delivery system for induction of peripheral immunological tolerance. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10795–10799. doi: 10.1073/pnas.91.23.10795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Takahashi I., Marinaro M., Kiyono H., Jackson R. J., Nakagawa I., Fujihashi K., Hamada S., Clements J. D., Bost K. L., McGhee J. R. Mechanisms for mucosal immunogenicity and adjuvancy of Escherichia coli labile enterotoxin. J Infect Dis. 1996 Mar;173(3):627–635. doi: 10.1093/infdis/173.3.627. [DOI] [PubMed] [Google Scholar]
  34. Tamura S., Funato H., Nagamine T., Aizawa C., Kurata T. Effectiveness of cholera toxin B subunit as an adjuvant for nasal influenza vaccination despite pre-existing immunity to CTB. Vaccine. 1989 Dec;7(6):503–505. doi: 10.1016/0264-410x(89)90273-9. [DOI] [PubMed] [Google Scholar]
  35. Tamura S., Ito Y., Asanuma H., Hirabayashi Y., Suzuki Y., Nagamine T., Aizawa C., Kurata T. Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit. J Immunol. 1992 Aug 1;149(3):981–988. [PubMed] [Google Scholar]
  36. Tamura S., Yamanaka A., Shimohara M., Tomita T., Komase K., Tsuda Y., Suzuki Y., Nagamine T., Kawahara K., Danbara H. Synergistic action of cholera toxin B subunit (and Escherichia coli heat-labile toxin B subunit) and a trace amount of cholera whole toxin as an adjuvant for nasal influenza vaccine. Vaccine. 1994 Apr;12(5):419–426. doi: 10.1016/0264-410x(94)90118-x. [DOI] [PubMed] [Google Scholar]
  37. Vajdy M., Kosco-Vilbois M. H., Kopf M., Köhler G., Lycke N. Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med. 1995 Jan 1;181(1):41–53. doi: 10.1084/jem.181.1.41. [DOI] [PubMed] [Google Scholar]
  38. de Haan L., Verweij W. R., Feil I. K., Lijnema T. H., Hol W. G., Agsteribbe E., Wilschut J. Mutants of the Escherichia coli heat-labile enterotoxin with reduced ADP-ribosylation activity or no activity retain the immunogenic properties of the native holotoxin. Infect Immun. 1996 Dec;64(12):5413–5416. doi: 10.1128/iai.64.12.5413-5416.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES