Abstract
A murine model of pneumonia due to the mouse pneumonitis agent (MoPn [murine Chlamydia trachomatis]) in mice deficient in CD4+ T-cell function (major histocompatibility complex [MHC] class II function [class II-/-], CD8+ T-cell function (beta2-microglobulin deficient, MHC class I deficient [Beta2m-/-]), B-cell function (C57BL/10J-Igh(tm1Cgn) [Igh-/-]), and gamma interferon (IFN-gamma) (C57BL/6-Ifg(tm1) [Ifg-/-]) or interleukin-4 (C57BL/6J(tm1Cgn29) [IL4-/-]) production was employed to determine if each of these mechanisms was critical to resistance against reinfection by C. trachomatis or if alternate compensatory mechanisms existed in their absence which could potentially be exploited in vaccine development. Resistance to reinfection with MoPn was heavily dependent on CD4+ T cells. CD4 T-cell-deficient MHC class II-/- mice were very susceptible to reinfection with MoPn, showing the critical importance of this cell to resistance. These mice lacked antibody production but did produce IFN-gamma, apparently by mechanisms involving NK and CD8+ T cells. Neutralization of IFN-gamma in these mice led to a borderline increase in susceptibility, showing a possible role (albeit small) of this cytokine in this setting. Tumor necrosis factor alpha (TNF-alpha) was also present at increased levels in these mice. Igh-/- B-cell-deficient mice which produce no antibody to MoPn were only modestly more susceptible to reinfection than immunized B-cell-intact controls, showing that antibody, including lung immunoglobulin A, is not an absolute requirement for relatively successful host defense in this setting. Levels of lung IFN-gamma and TNF-alpha were elevated in Igh-/- mice compared to those in controls. IL-4-/- mice (deficient in Th2 function) could develop normal resistance to reinfection with MoPn. Conversely, normal mice rendered partially IFN-gamma deficient by antibody depletion were somewhat impaired in their ability to develop acquired immunity to MoPn, again indicating a role for this cytokine in host defense against rechallenge. Of most importance, however, congenitally IFN-gamma-deficient Ifg-/- mice (which have elevated levels of other cytokines, including TNF-alpha and granulocyte-macrophage colony-stimulating factor) are paradoxically more resistant to MoPn rechallenge than controls, showing that IFN-gamma is not an absolute requirement for acquired resistance and implying the presence of very effective compensatory host defense mechanism(s). In vivo depletion of TNF-alpha significantly increased MoPn levels in the lungs in these mice. Thus, resistance to reinfection in this model is flexible and multifactorial and is heavily dependent on CD4+ T cells, with a probable role for IFN-gamma and TNF-alpha and a possible modest role for Th1-dependent antibody. Since IFN-gamma was dispensable in host defense, the highly effective mechanism or mechanisms which can compensate for its absence (which include TNF-alpha) deserve further study.
Full Text
The Full Text of this article is available as a PDF (191.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asano M. S., Ahmed R. CD8 T cell memory in B cell-deficient mice. J Exp Med. 1996 May 1;183(5):2165–2174. doi: 10.1084/jem.183.5.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buzoni-Gatel D., Guilloteau L., Bernard F., Bernard S., Chardès T., Rocca A. Protection against Chlamydia psittaci in mice conferred by Lyt-2+ T cells. Immunology. 1992 Oct;77(2):284–288. [PMC free article] [PubMed] [Google Scholar]
- Coalson J. J., Winter V. T., Bass L. B., Schachter J., Grubbs B. G., Williams D. M. Chlamydia trachomatis pneumonia in the immune, athymic and normal BALB mouse. Br J Exp Pathol. 1987 Jun;68(3):399–411. [PMC free article] [PubMed] [Google Scholar]
- Cotter T. W., Meng Q., Shen Z. L., Zhang Y. X., Su H., Caldwell H. D. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect Immun. 1995 Dec;63(12):4704–4714. doi: 10.1128/iai.63.12.4704-4714.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., Stewart T. A. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993 Mar 19;259(5102):1739–1742. doi: 10.1126/science.8456300. [DOI] [PubMed] [Google Scholar]
- George A. Generation of gamma interferon responses in murine Peyer's patches following oral immunization. Infect Immun. 1996 Nov;64(11):4606–4611. doi: 10.1128/iai.64.11.4606-4611.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grusby M. J., Johnson R. S., Papaioannou V. E., Glimcher L. H. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science. 1991 Sep 20;253(5026):1417–1420. doi: 10.1126/science.1910207. [DOI] [PubMed] [Google Scholar]
- Harty J. T., Bevan M. J. Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity. 1995 Jul;3(1):109–117. doi: 10.1016/1074-7613(95)90163-9. [DOI] [PubMed] [Google Scholar]
- Igietseme J. U., Magee D. M., Williams D. M., Rank R. G. Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun. 1994 Nov;62(11):5195–5197. doi: 10.1128/iai.62.11.5195-5197.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igietseme J. U., Ramsey K. H., Magee D. M., Williams D. M., Kincy T. J., Rank R. G. Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg Immunol. 1993 Nov-Dec;5(6):317–324. [PubMed] [Google Scholar]
- Kitamura D., Roes J., Kühn R., Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991 Apr 4;350(6317):423–426. doi: 10.1038/350423a0. [DOI] [PubMed] [Google Scholar]
- Koller B. H., Smithies O. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8932–8935. doi: 10.1073/pnas.86.22.8932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kühn R., Rajewsky K., Müller W. Generation and analysis of interleukin-4 deficient mice. Science. 1991 Nov 1;254(5032):707–710. doi: 10.1126/science.1948049. [DOI] [PubMed] [Google Scholar]
- Magee D. M., Igietseme J. U., Smith J. G., Bleicker C. A., Grubbs B. G., Schachter J., Rank R. G., Williams D. M. Chlamydia trachomatis pneumonia in the severe combined immunodeficiency (SCID) mouse. Reg Immunol. 1993 Nov-Dec;5(6):305–311. [PubMed] [Google Scholar]
- Magee D. M., Williams D. M., Smith J. G., Bleicker C. A., Grubbs B. G., Schachter J., Rank R. G. Role of CD8 T cells in primary Chlamydia infection. Infect Immun. 1995 Feb;63(2):516–521. doi: 10.1128/iai.63.2.516-521.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magee D. M., Williams D. M., Wing E. J., Bleicker C. A., Schachter J. Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis. Infect Immun. 1991 Jul;59(7):2370–2375. doi: 10.1128/iai.59.7.2370-2375.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison R. P., Feilzer K., Tumas D. B. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun. 1995 Dec;63(12):4661–4668. doi: 10.1128/iai.63.12.4661-4668.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsey K. H., Soderberg L. S., Rank R. G. Resolution of chlamydial genital infection in B-cell-deficient mice and immunity to reinfection. Infect Immun. 1988 May;56(5):1320–1325. doi: 10.1128/iai.56.5.1320-1325.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rank R. G., Ramsey K. H., Pack E. A., Williams D. M. Effect of gamma interferon on resolution of murine chlamydial genital infection. Infect Immun. 1992 Oct;60(10):4427–4429. doi: 10.1128/iai.60.10.4427-4429.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starnbach M. N., Bevan M. J., Lampe M. F. Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis. J Immunol. 1994 Dec 1;153(11):5183–5189. [PubMed] [Google Scholar]
- Taylor-Robinson A. W., Phillips R. S. Reconstitution of B-cell-depleted mice with B cells restores Th2-type immune responses during Plasmodium chabaudi chabaudi infection. Infect Immun. 1996 Jan;64(1):366–370. doi: 10.1128/iai.64.1.366-370.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. M., Byrne G. I., Grubbs B., Marshal T. J., Schachter J. Role in vivo for gamma interferon in control of pneumonia caused by Chlamydia trachomatis in mice. Infect Immun. 1988 Nov;56(11):3004–3006. doi: 10.1128/iai.56.11.3004-3006.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. M., Grubbs B. G., Schachter J., Magee D. M. Gamma interferon levels during Chlamydia trachomatis pneumonia in mice. Infect Immun. 1993 Aug;61(8):3556–3558. doi: 10.1128/iai.61.8.3556-3558.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. M., Grubbs B., Schachter J. Primary murine Chlamydia trachomatis pneumonia in B-cell-deficient mice. Infect Immun. 1987 Oct;55(10):2387–2390. doi: 10.1128/iai.55.10.2387-2390.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. M., Magee D. M., Bonewald L. F., Smith J. G., Bleicker C. A., Byrne G. I., Schachter J. A role in vivo for tumor necrosis factor alpha in host defense against Chlamydia trachomatis. Infect Immun. 1990 Jun;58(6):1572–1576. doi: 10.1128/iai.58.6.1572-1576.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. M., Schachter J., Drutz D. J., Sumaya C. V. Pneumonia due to Chlamydia trachomatis in the immunocompromised (nude) mouse. J Infect Dis. 1981 Feb;143(2):238–241. doi: 10.1093/infdis/143.2.238. [DOI] [PubMed] [Google Scholar]
- Williams D. M., Schachter J., Grubbs B. Role of natural killer cells in infection with the mouse pneumonitis agent (murine Chlamydia trachomatis). Infect Immun. 1987 Jan;55(1):223–226. doi: 10.1128/iai.55.1.223-226.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. M., Schachter J., Grubbs B., Sumaya C. V. The role of antibody in host defense against the agent of mouse pneumonitis. J Infect Dis. 1982 Feb;145(2):200–205. doi: 10.1093/infdis/145.2.200. [DOI] [PubMed] [Google Scholar]
- Williams D. M., Schachter J., Weiner M. H., Grubbs B. Antibody in host defense against mouse pneumonitis agent (murine Chlamydia trachomatis). Infect Immun. 1984 Sep;45(3):674–678. doi: 10.1128/iai.45.3.674-678.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang X., HayGlass K. T., Brunham R. C. Genetically determined differences in IL-10 and IFN-gamma responses correlate with clearance of Chlamydia trachomatis mouse pneumonitis infection. J Immunol. 1996 Jun 1;156(11):4338–4344. [PubMed] [Google Scholar]
- von der Weid T., Kopf M., Köhler G., Langhorne J. The immune response to Plasmodium chabaudi malaria in interleukin-4-deficient mice. Eur J Immunol. 1994 Oct;24(10):2285–2293. doi: 10.1002/eji.1830241004. [DOI] [PubMed] [Google Scholar]
