Abstract
Objectives: To examine the size and direction of osteophyte in knee osteoarthritis (OA) and to determine associations between osteophyte size and other radiographic features.
Methods: Knee radiographs (standing extended anteroposterior and 30 degrees flexion skyline views) were examined from 204 patients referred to hospital with symptomatic knee OA (155 women, 49 men; mean age 70, range 34–91 years). A single observer assessed films for osteophyte size and direction at eight sites; narrowing in each compartment; varus/valgus angulation; patellofemoral subluxation; attrition; and chondrocalcinosis using a standard atlas, direct measurement, or visual assessment. For analysis, one OA knee was selected at random from each subject.
Results: Osteophyte direction at the eight sites was divisible into five categories. At all sites, except for the lateral tibial plateau and the medial patella, osteophyte direction varied according to (a) the size of osteophyte and (b) the degree of local narrowing. At the medial femur, medial tibia, and lateral femur osteophyte direction changed from being predominantly horizontal to predominantly vertical with increasing size. The size of osteophyte correlated positively with the severity of local narrowing, except for the medial patellofemoral compartment where osteophyte size correlated positively with the severity of narrowing in the medial tibiofemoral compartment. Logistic regression analysis showed that osteophyte size was associated not only with local narrowing but also with local malalignment and bone attrition, and that chondrocalcinosis was positively associated with osteophyte size at multiple sites.
Conclusion: In patients referred to hospital with knee OA different patterns of osteophyte direction are discernible. Osteophyte size is associated with local compartmental narrowing but also local alignment and attrition. Chondrocalcinosis is associated with osteophytosis throughout the joint. These data suggest that both local biomechanical and constitutional factors influence the size and direction of osteophyte formation in knee OA.
Full Text
The Full Text of this article is available as a PDF (133.0 KB).
Figure 1 .
Direction of osteophyte at each site among 204 subjects. Size of arrow reflects frequency of direction. Osteophyte was seen in 93 subjects at the lateral femur, 112 at the lateral tibia, 101 at the medial femur, 101 at the medial tibia, 72 at the lateral patella, 60 at the lateral femoral trochlea, 68 at the medial patella, and 67 at the medial femoral trochlea.
Figure 2 .
Comparison of direction of osteophyte between grade 1 osteophyte and grade 2 or 3 osteophyte. * Significance was found between grade 1 and grade 2 or 3 osteophytes.
Figure 3 .
Comparison of direction of osteophyte at the lateral tibia between grade 0 or 1 and grade 2 or 3 tibiofemoral narrowing. The direction of osteophyte in grade 2 or 3 narrowing significantly differed from that in grade 0 or 1 narrowing in both lateral (p<0.001) and medial (p<0.001) TFJ. * Significance was found between grade 0 or 1 and 2 or 3 narrowing.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman R. D., Hochberg M., Murphy W. A., Jr, Wolfe F., Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage. 1995 Sep;3 (Suppl A):3–70. [PubMed] [Google Scholar]
- Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
- Boegård T., Rudling O., Petersson I. F., Jonsson K. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint. Ann Rheum Dis. 1998 Jul;57(7):395–400. doi: 10.1136/ard.57.7.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boegård T., Rudling O., Petersson I. F., Jonsson K. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998 Jul;57(7):401–407. doi: 10.1136/ard.57.7.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieppe P. A. Recommended methodology for assessing the progression of osteoarthritis of the hip and knee joints. Osteoarthritis Cartilage. 1995 Jun;3(2):73–77. doi: 10.1016/s1063-4584(05)80040-8. [DOI] [PubMed] [Google Scholar]
- Doherty M., Dieppe P. Clinical aspects of calcium pyrophosphate dihydrate crystal deposition. Rheum Dis Clin North Am. 1988 Aug;14(2):395–414. [PubMed] [Google Scholar]
- Felson D. T., Anderson J. J., Naimark A., Kannel W., Meenan R. F. The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: the Framingham Study. J Rheumatol. 1989 Sep;16(9):1241–1245. [PubMed] [Google Scholar]
- Felson D. T., Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998 Aug;41(8):1343–1355. doi: 10.1002/1529-0131(199808)41:8<1343::AID-ART3>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- Gilbertson E. M. Development of periarticular osteophytes in experimentally induced osteoarthritis in the dog. A study using microradiographic, microangiographic, and fluorescent bone-labelling techniques. Ann Rheum Dis. 1975 Feb;34(1):12–25. doi: 10.1136/ard.34.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graff R. D., Lazarowski E. R., Banes A. J., Lee G. M. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum. 2000 Jul;43(7):1571–1579. doi: 10.1002/1529-0131(200007)43:7<1571::AID-ANR22>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Hernborg J., Nilsson B. E. The relationship between osteophytes in the knee joint, osteoarthritis and aging. Acta Orthop Scand. 1973;44(1):69–74. doi: 10.3109/17453677308988675. [DOI] [PubMed] [Google Scholar]
- Jones R. E., Smith E. C., Reisch J. S. Effects of medial meniscectomy in patients older than forty years. J Bone Joint Surg Am. 1978 Sep;60(6):783–786. [PubMed] [Google Scholar]
- Kallman D. A., Wigley F. M., Scott W. W., Jr, Hochberg M. C., Tobin J. D. The longitudinal course of hand osteoarthritis in a male population. Arthritis Rheum. 1990 Sep;33(9):1323–1332. doi: 10.1002/art.1780330904. [DOI] [PubMed] [Google Scholar]
- Kindynis P., Haller J., Kang H. S., Resnick D., Sartoris D. J., Trudell D., Tyson R. Osteophytosis of the knee: anatomic, radiologic, and pathologic investigation. Radiology. 1990 Mar;174(3 Pt 1):841–846. doi: 10.1148/radiology.174.3.2305068. [DOI] [PubMed] [Google Scholar]
- Kobayashi T. [Osteophyte formation in the knee joint: a radiological study]. Nihon Seikeigeka Gakkai Zasshi. 1994 Apr;68(4):139–150. [PubMed] [Google Scholar]
- Laurin C. A., Dussault R., Levesque H. P. The tangential x-ray investigation of the patellofemoral joint: x-ray technique, diagnostic criteria and their interpretation. Clin Orthop Relat Res. 1979 Oct;(144):16–26. [PubMed] [Google Scholar]
- Lawrence J. S., Bremner J. M., Bier F. Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes. Ann Rheum Dis. 1966 Jan;25(1):1–24. [PMC free article] [PubMed] [Google Scholar]
- Marshall J. L., Olsson S. E. Instability of the knee. A long-term experimental study in dogs. J Bone Joint Surg Am. 1971 Dec;53(8):1561–1570. [PubMed] [Google Scholar]
- Mazzuca S. A., Brandt K. D., Dieppe P. A., Doherty M., Katz B. P., Lane K. A. Effect of alignment of the medial tibial plateau and x-ray beam on apparent progression of osteoarthritis in the standing anteroposterior knee radiograph. Arthritis Rheum. 2001 Aug;44(8):1786–1794. doi: 10.1002/1529-0131(200108)44:8<1786::AID-ART315>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Nagaosa Y., Mateus M., Hassan B., Lanyon P., Doherty M. Development of a logically devised line drawing atlas for grading of knee osteoarthritis. Ann Rheum Dis. 2000 Aug;59(8):587–595. doi: 10.1136/ard.59.8.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmoski M. J., Brandt K. D. Immobilization of the knee prevents osteoarthritis after anterior cruciate ligament transection. Arthritis Rheum. 1982 Oct;25(10):1201–1208. doi: 10.1002/art.1780251009. [DOI] [PubMed] [Google Scholar]
- Pottenger L. A., Phillips F. M., Draganich L. F. The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum. 1990 Jun;33(6):853–858. doi: 10.1002/art.1780330612. [DOI] [PubMed] [Google Scholar]
- Rosen F., McCabe G., Quach J., Solan J., Terkeltaub R., Seegmiller J. E., Lotz M. Differential effects of aging on human chondrocyte responses to transforming growth factor beta: increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum. 1997 Jul;40(7):1275–1281. doi: 10.1002/1529-0131(199707)40:7<1275::AID-ART12>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Williams J. M., Brandt K. D. Exercise increases osteophyte formation and diminishes fibrillation following chemically induced articular cartilage injury. J Anat. 1984 Dec;139(Pt 4):599–611. [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Glynn R. J., Felson D. T. Musculoskeletal disease research: should we analyze the joint or the person? J Rheumatol. 1996 Jul;23(7):1130–1134. [PubMed] [Google Scholar]
- van Beuningen H. M., Glansbeek H. L., van der Kraan P. M., van den Berg W. B. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage. 1998 Sep;6(5):306–317. doi: 10.1053/joca.1998.0129. [DOI] [PubMed] [Google Scholar]
- van Beuningen H. M., van der Kraan P. M., Arntz O. J., van den Berg W. B. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest. 1994 Aug;71(2):279–290. [PubMed] [Google Scholar]
- van Osch G. J., van der Kraan P. M., van Valburg A. A., van den Berg W. B. The relation between cartilage damage and osteophyte size in a murine model for osteoarthritis in the knee. Rheumatol Int. 1996;16(3):115–119. doi: 10.1007/BF01409983. [DOI] [PubMed] [Google Scholar]
- van Saase J. L., van Romunde L. K., Cats A., Vandenbroucke J. P., Valkenburg H. A. Epidemiology of osteoarthritis: Zoetermeer survey. Comparison of radiological osteoarthritis in a Dutch population with that in 10 other populations. Ann Rheum Dis. 1989 Apr;48(4):271–280. doi: 10.1136/ard.48.4.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van den Berg W. B. Growth factors in experimental osteoarthritis: transforming growth factor beta pathogenic? J Rheumatol Suppl. 1995 Feb;43:143–145. [PubMed] [Google Scholar]



