Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3003–3010. doi: 10.1128/iai.65.8.3003-3010.1997

Plasmodium falciparum AARP1, a giant protein containing repeated motifs rich in asparagine and aspartate residues, is associated with the infected erythrocyte membrane.

J C Barale 1, D Candelle 1, G Attal-Bonnefoy 1, P Dehoux 1, S Bonnefoy 1, R Ridley 1, L Pereira da Silva 1, G Langsley 1
PMCID: PMC175423  PMID: 9234746

Abstract

During Plasmodium falciparum asexual intraerythrocytic development, the host's cell plasma membrane is modified by the insertion of parasite proteins. One or more of these modifications mediate the cytoadherence of infected erythrocytes to host vascular endothelium. However, these surface antigens can be the target of cytophilic antibodies which promote phagocytosis of the infected erythrocyte. It has been proposed that antibodies directed to epitopes rich in asparagine play an important role in this process, which has promoted efforts to isolate the corresponding gene(s). We describe here P. falciparum asparagine- and aspartate-rich protein 1 (PfAARP1), a new giant (circa 700-kDa) protein associated with the infected erythrocyte membrane which is rich in asparagine and aspartate residues due to the presence of nine blocks of repeats. Topology analysis predicts that PfAARP1 has multiple transmembrane domains and at least five external loops. Human antibodies immunopurified against a sequence composed exclusively of asparagine and aspartate amino acids derived from PfAARP1 label the surface of the infected erythrocyte, demonstrating that such motifs are exposed. Interestingly, external loop 4 of PfAARP1 contains repetitions of these residues, and their possible role as a target of cytophilic antibodies is discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Anders R. F. Multiple cross-reactivities amongst antigens of Plasmodium falciparum impair the development of protective immunity against malaria. Parasite Immunol. 1986 Nov;8(6):529–539. doi: 10.1111/j.1365-3024.1986.tb00867.x. [DOI] [PubMed] [Google Scholar]
  3. Attal G., Langsley G. A Plasmodium falciparum homologue of a rab specific GDP dissociation inhibitor. Mol Biochem Parasitol. 1996 Jul;79(1):91–95. doi: 10.1016/0166-6851(96)02606-0. [DOI] [PubMed] [Google Scholar]
  4. Barnes D. A., Wollish W., Nelson R. G., Leech J. H., Petersen C. Plasmodium falciparum: D260, an intraerythrocytic parasite protein, is a member of the glutamic acid dipeptide-repeat family of proteins. Exp Parasitol. 1995 Aug;81(1):79–89. doi: 10.1006/expr.1995.1095. [DOI] [PubMed] [Google Scholar]
  5. Baruch D. I., Pasloske B. L., Singh H. B., Bi X., Ma X. C., Feldman M., Taraschi T. F., Howard R. J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995 Jul 14;82(1):77–87. doi: 10.1016/0092-8674(95)90054-3. [DOI] [PubMed] [Google Scholar]
  6. Bataille D., Blache P., Mercier F., Jarrousse C., Kervran A., Dufour M., Mangeat P., Dubrasquet M., Mallat A., Lotersztajn S. Glucagon and related peptides. Molecular structure and biological specificity. Ann N Y Acad Sci. 1988;527:168–185. doi: 10.1111/j.1749-6632.1988.tb26980.x. [DOI] [PubMed] [Google Scholar]
  7. Biozzi G., Stiffel C., Mouton D., Bouthillier Y., Decreusefond C. Cytodynamics of the immune response in two lines of mice genetically selected for "high" and "low" antibody synthesis. J Exp Med. 1972 May 1;135(5):1071–1094. doi: 10.1084/jem.135.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coppel R. L., Lustigman S., Murray L., Anders R. F. MESA is a Plasmodium falciparum phosphoprotein associated with the erythrocyte membrane skeleton. Mol Biochem Parasitol. 1988 Dec;31(3):223–231. doi: 10.1016/0166-6851(88)90152-1. [DOI] [PubMed] [Google Scholar]
  9. Da Silva E., Foley M., Dluzewski A. R., Murray L. J., Anders R. F., Tilley L. The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Mol Biochem Parasitol. 1994 Jul;66(1):59–69. doi: 10.1016/0166-6851(94)90036-1. [DOI] [PubMed] [Google Scholar]
  10. Dame J. B., Williams J. L., McCutchan T. F., Weber J. L., Wirtz R. A., Hockmeyer W. T., Maloy W. L., Haynes J. D., Schneider I., Roberts D. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science. 1984 Aug 10;225(4662):593–599. doi: 10.1126/science.6204383. [DOI] [PubMed] [Google Scholar]
  11. Deitsch K. W., Wellems T. E. Membrane modifications in erythrocytes parasitized by Plasmodium falciparum. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):1–10. doi: 10.1016/0166-6851(95)02575-8. [DOI] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foley M., Murray L. J., Anders R. F. The ring-infected erythrocyte surface antigen protein of Plasmodium falciparum is phosphorylated upon association with the host cell membrane. Mol Biochem Parasitol. 1990 Jan 1;38(1):69–75. doi: 10.1016/0166-6851(90)90206-2. [DOI] [PubMed] [Google Scholar]
  14. Franzén L., Wåhlin B., Wahlgren M., Aslund L., Perlmann P., Wigzell H., Pettersson U. Enhancement or inhibition of Plasmodium falciparum erythrocyte reinvasion in vitro by antibodies to an asparagine rich protein. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):201–211. doi: 10.1016/0166-6851(89)90071-6. [DOI] [PubMed] [Google Scholar]
  15. Goman M., Langsley G., Hyde J. E., Yankovsky N. K., Zolg J. W., Scaife J. G. The establishment of genomic DNA libraries for the human malaria parasite Plasmodium falciparum and identification of individual clones by hybridisation. Mol Biochem Parasitol. 1982 Jun;5(6):391–400. doi: 10.1016/0166-6851(82)90012-3. [DOI] [PubMed] [Google Scholar]
  16. Guerin-Marchand C., Druilhe P., Galey B., Londono A., Patarapotikul J., Beaudoin R. L., Dubeaux C., Tartar A., Mercereau-Puijalon O., Langsley G. A liver-stage-specific antigen of Plasmodium falciparum characterized by gene cloning. Nature. 1987 Sep 10;329(6135):164–167. doi: 10.1038/329164a0. [DOI] [PubMed] [Google Scholar]
  17. Gysin J., Gavoille S., Mattei D., Scherf A., Bonnefoy S., Mercereau-Puijalon O., Feldmann T., Kun J., Müller-Hill B., Pereira da Silva L. In vitro phagocytosis inhibition assay for the screening of potential candidate antigens for sub-unit vaccines against the asexual blood stage of Plasmodium falciparum. J Immunol Methods. 1993 Feb 26;159(1-2):209–219. doi: 10.1016/0022-1759(93)90159-5. [DOI] [PubMed] [Google Scholar]
  18. Hinterberg K., Mattei D., Wellems T. E., Scherf A. Interchromosomal exchange of a large subtelomeric segment in a Plasmodium falciparum cross. EMBO J. 1994 Sep 1;13(17):4174–4180. doi: 10.1002/j.1460-2075.1994.tb06735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hinterberg K., Scherf A., Gysin J., Toyoshima T., Aikawa M., Mazie J. C., da Silva L. P., Mattei D. Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer's clefts. Exp Parasitol. 1994 Nov;79(3):279–291. doi: 10.1006/expr.1994.1091. [DOI] [PubMed] [Google Scholar]
  20. Hinterberg K., Scherf A. PFGE: improved conditions for rapid and high-resolution separation of Plasmodium falciparum chromosomes. Parasitol Today. 1994 Jun;10(6):225–225. doi: 10.1016/0169-4758(94)90121-x. [DOI] [PubMed] [Google Scholar]
  21. Kemp D. J., Corcoran L. M., Coppel R. L., Stahl H. D., Bianco A. E., Brown G. V., Anders R. F. Size variation in chromosomes from independent cultured isolates of Plasmodium falciparum. Nature. 1985 May 23;315(6017):347–350. doi: 10.1038/315347a0. [DOI] [PubMed] [Google Scholar]
  22. Krishna S., Cowan G., Meade J. C., Wells R. A., Stringer J. R., Robson K. J. A family of cation ATPase-like molecules from Plasmodium falciparum. J Cell Biol. 1993 Jan;120(2):385–398. doi: 10.1083/jcb.120.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kun J., Hesselbach J., Schreiber M., Scherf A., Gysin J., Mattei D., Pereira da Silva L., Müller-Hill B. Cloning and expression of genomic DNA sequences coding for putative erythrocyte membrane-associated antigens of Plasmodium falciparum. Res Immunol. 1991 Mar-Apr;142(3):199–210. doi: 10.1016/0923-2494(91)90059-r. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Leech J. H., Barnwell J. W., Miller L. H., Howard R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med. 1984 Jun 1;159(6):1567–1575. doi: 10.1084/jem.159.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Luse S. A., Miller L. H. Plasmodium falciparum malaria. Ultrastructure of parasitized erythrocytes in cardiac vessels. Am J Trop Med Hyg. 1971 Sep;20(5):655–660. [PubMed] [Google Scholar]
  27. Marsh K., Howard R. J. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science. 1986 Jan 10;231(4734):150–153. doi: 10.1126/science.2417315. [DOI] [PubMed] [Google Scholar]
  28. Mattei D., Hinterberg K., Scherf A. Pfl I-I and Pf332: two giant proteins synthesized in erythrocytes infected with Plasmodium falciparum. Parasitol Today. 1992 Dec;8(12):426–428. doi: 10.1016/0169-4758(92)90197-a. [DOI] [PubMed] [Google Scholar]
  29. McCutchan T. F., Hansen J. L., Dame J. B., Mullins J. A. Mung bean nuclease cleaves Plasmodium genomic DNA at sites before and after genes. Science. 1984 Aug 10;225(4662):625–628. doi: 10.1126/science.6330899. [DOI] [PubMed] [Google Scholar]
  30. Miller L. H., Good M. F., Milon G. Malaria pathogenesis. Science. 1994 Jun 24;264(5167):1878–1883. doi: 10.1126/science.8009217. [DOI] [PubMed] [Google Scholar]
  31. Pasvol G., Wilson R. J., Smalley M. E., Brown J. Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Ann Trop Med Parasitol. 1978 Feb;72(1):87–88. doi: 10.1080/00034983.1978.11719283. [DOI] [PubMed] [Google Scholar]
  32. Pologe L. G., Ravetch J. V. Large deletions result from breakage and healing of P. falciparum chromosomes. Cell. 1988 Dec 2;55(5):869–874. doi: 10.1016/0092-8674(88)90142-0. [DOI] [PubMed] [Google Scholar]
  33. Rawlings D. J., Kaslow D. C. A novel 40-kDa membrane-associated EF-hand calcium-binding protein in Plasmodium falciparum. J Biol Chem. 1992 Feb 25;267(6):3976–3982. [PubMed] [Google Scholar]
  34. Rechsteiner M., Rogers S. W. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996 Jul;21(7):267–271. [PubMed] [Google Scholar]
  35. Ridley R. G., Takacs B., Etlinger H., Scaife J. G. A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys. Parasitology. 1990 Oct;101(Pt 2):187–192. doi: 10.1017/s0031182000063228. [DOI] [PubMed] [Google Scholar]
  36. Ridley R. G., Takacs B., Lahm H. W., Delves C. J., Goman M., Certa U., Matile H., Woollett G. R., Scaife J. G. Characterisation and sequence of a protective rhoptry antigen from Plasmodium falciparum. Mol Biochem Parasitol. 1990 Jun;41(1):125–134. doi: 10.1016/0166-6851(90)90103-s. [DOI] [PubMed] [Google Scholar]
  37. Rost B., Fariselli P., Casadio R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 1996 Aug;5(8):1704–1718. doi: 10.1002/pro.5560050824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rubio J. P., Thompson J. K., Cowman A. F. The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. EMBO J. 1996 Aug 1;15(15):4069–4077. [PMC free article] [PubMed] [Google Scholar]
  39. Scherf A., Carter R., Petersen C., Alano P., Nelson R., Aikawa M., Mattei D., Pereira da Silva L., Leech J. Gene inactivation of Pf11-1 of Plasmodium falciparum by chromosome breakage and healing: identification of a gametocyte-specific protein with a potential role in gametogenesis. EMBO J. 1992 Jun;11(6):2293–2301. doi: 10.1002/j.1460-2075.1992.tb05288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Scherf A., Mattei D. Cloning and characterization of chromosome breakpoints of Plasmodium falciparum: breakage and new telomere formation occurs frequently and randomly in subtelomeric genes. Nucleic Acids Res. 1992 Apr 11;20(7):1491–1496. doi: 10.1093/nar/20.7.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith J. D., Chitnis C. E., Craig A. G., Roberts D. J., Hudson-Taylor D. E., Peterson D. S., Pinches R., Newbold C. I., Miller L. H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995 Jul 14;82(1):101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stahl H. D., Bianco A. E., Crewther P. E., Burkot T., Coppel R. L., Brown G. V., Anders R. F., Kemp D. J. An asparagine-rich protein from blood stages of Plasmodium falciparum shares determinants with sporozoites. Nucleic Acids Res. 1986 Apr 11;14(7):3089–3102. doi: 10.1093/nar/14.7.3089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Su X. Z., Heatwole V. M., Wertheimer S. P., Guinet F., Herrfeldt J. A., Peterson D. S., Ravetch J. A., Wellems T. E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995 Jul 14;82(1):89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]
  44. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  45. Tsang V. C., Wilkins P. P. Optimum dissociating condition for immunoaffinity and preferential isolation of antibodies with high specific activity. J Immunol Methods. 1991 Apr 25;138(2):291–299. doi: 10.1016/0022-1759(91)90178-i. [DOI] [PubMed] [Google Scholar]
  46. Wahlgren M., Aslund L., Franzén L., Sundvall M., Wåhlin B., Berzins K., McNicol L. A., Björkman A., Wigzell H., Perlmann P. A Plasmodium falciparum antigen containing clusters of asparagine residues. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2677–2681. doi: 10.1073/pnas.83.8.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zavala F., Masuda A., Graves P. M., Nussenzweig V., Nussenzweig R. S. Ubiquity of the repetitive epitope of the CS protein in different isolates of human malaria parasites. J Immunol. 1985 Oct;135(4):2790–2793. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES