Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3017–3023. doi: 10.1128/iai.65.8.3017-3023.1997

Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230.

J Healer 1, D McGuinness 1, P Hopcroft 1, S Haley 1, R Carter 1, E Riley 1
PMCID: PMC175425  PMID: 9234748

Abstract

Antibodies to the sexual-stage surface antigens of Plasmodium falciparum, Pfs230 and Pfs48/45, can abolish the infectivity of gametes to mosquitoes; these antigens have been proposed as candidates for inclusion in a malaria transmission-blocking vaccine. One possible mechanism of antibody-mediated transmission blocking is complement-mediated gamete lysis. We have used a panel of human sera from geographically distinct regions where malaria is endemic to investigate whether this may be a mechanism of naturally acquired transmission-blocking immunity to P. falciparum. By immunoprecipitation, we have shown that antibody recognition of Pfs230 and Pfs48/45 is limited, despite universal exposure to P. falciparum gametocytes. In vitro complement-mediated lysis of P. falciparum gametes was positively associated with the presence of antibodies to Pfs230 but not with antibodies to the N-terminal region of the precursor molecule (Pfs260), which is shed from the gametocyte surface at the time of gametogenesis. Similarly, antibodies to two other gametocyte-specific proteins, Pfs48/45 and Pfg27/25, were not associated with gamete lysis. All sera which mediate gamete lysis contain immunoglobulin G1 (IgG1) and/or IgG3 antibodies to gamete surface proteins as determined by an enzyme-linked immunosorbent assay. These data suggest that Pfs230 is a major target of complement-fixing antibodies which may be important for antibody-mediated transmission-blocking immunity.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M., Rener J., Carter R., Miller L. H. An electron microscopical study of the interaction of monoclonal antibodies with gametes of the malarial parasite Plasmodium gallinaceum. J Protozool. 1981 Aug;28(3):383–388. doi: 10.1111/j.1550-7408.1981.tb02871.x. [DOI] [PubMed] [Google Scholar]
  2. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  3. Brüggemann M., Williams G. T., Bindon C. I., Clark M. R., Walker M. R., Jefferis R., Waldmann H., Neuberger M. S. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med. 1987 Nov 1;166(5):1351–1361. doi: 10.1084/jem.166.5.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carter R., Graves P. M., Keister D. B., Quakyi I. A. Properties of epitopes of Pfs 48/45, a target of transmission blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum. Parasite Immunol. 1990 Nov;12(6):587–603. doi: 10.1111/j.1365-3024.1990.tb00990.x. [DOI] [PubMed] [Google Scholar]
  5. Carter R., Graves P. M., Quakyi I. A., Good M. F. Restricted or absent immune responses in human populations to Plasmodium falciparum gamete antigens that are targets of malaria transmission-blocking antibodies. J Exp Med. 1989 Jan 1;169(1):135–147. doi: 10.1084/jem.169.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter R., Ranford-Cartwright L., Alano P. The culture and preparation of gametocytes of Plasmodium falciparum for immunochemical, molecular, and mosquito infectivity studies. Methods Mol Biol. 1993;21:67–88. doi: 10.1385/0-89603-239-6:67. [DOI] [PubMed] [Google Scholar]
  7. Cooper N. R. Complement evasion strategies of microorganisms. Immunol Today. 1991 Sep;12(9):327–331. doi: 10.1016/0167-5699(91)90010-Q. [DOI] [PubMed] [Google Scholar]
  8. Graves P. M., Carter R., Burkot T. R., Quakyi I. A., Kumar N. Antibodies to Plasmodium falciparum gamete surface antigens in Papua New Guinea sera. Parasite Immunol. 1988 Mar;10(2):209–218. doi: 10.1111/j.1365-3024.1988.tb00215.x. [DOI] [PubMed] [Google Scholar]
  9. Graves P. M., Wirtz R. A., Carter R., Burkot T. R., Looker M., Targett G. A. Naturally occurring antibodies to an epitope on Plasmodium falciparum gametes detected by monoclonal antibody-based competitive enzyme-linked immunosorbent assay. Infect Immun. 1988 Nov;56(11):2818–2821. doi: 10.1128/iai.56.11.2818-2821.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenwood B. M., Bradley A. K., Greenwood A. M., Byass P., Jammeh K., Marsh K., Tulloch S., Oldfield F. S., Hayes R. Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. Trans R Soc Trop Med Hyg. 1987;81(3):478–486. doi: 10.1016/0035-9203(87)90170-2. [DOI] [PubMed] [Google Scholar]
  11. Howard R. J., Kaushal D. C., Carter R. Radioiodination of parasite antigens with 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycoluril (IODOGEN): studies with zygotes of Plasmodium gallinaceum. J Protozool. 1982 Feb;29(1):114–117. doi: 10.1111/j.1550-7408.1982.tb02891.x. [DOI] [PubMed] [Google Scholar]
  12. Ifediba T., Vanderberg J. P. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature. 1981 Nov 26;294(5839):364–366. doi: 10.1038/294364a0. [DOI] [PubMed] [Google Scholar]
  13. Jefferis R., Reimer C. B., Skvaril F., de Lange G., Ling N. R., Lowe J., Walker M. R., Phillips D. J., Aloisio C. H., Wells T. W. Evaluation of monoclonal antibodies having specificity for human IgG sub-classes: results of an IUIS/WHO collaborative study. Immunol Lett. 1985;10(3-4):223–252. doi: 10.1016/0165-2478(85)90082-3. [DOI] [PubMed] [Google Scholar]
  14. Kaushal D. C., Carter R., Rener J., Grotendorst C. A., Miller L. H., Howard R. J. Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. J Immunol. 1983 Nov;131(5):2557–2562. [PubMed] [Google Scholar]
  15. Kumar N., Carter R. Biosynthesis of the target antigens of antibodies blocking transmission of Plasmodium falciparum. Mol Biochem Parasitol. 1984 Nov;13(3):333–342. doi: 10.1016/0166-6851(84)90124-5. [DOI] [PubMed] [Google Scholar]
  16. Kumar N. Phase separation in Triton X-114 of antigens of transmission blocking immunity in Plasmodium gallinaceum. Mol Biochem Parasitol. 1985 Dec;17(3):343–358. doi: 10.1016/0166-6851(85)90008-8. [DOI] [PubMed] [Google Scholar]
  17. Nijhout M. M. Plasmodium gallinaceum: exflagellation stimulated by a mosquito factor. Exp Parasitol. 1979 Aug;48(1):75–80. doi: 10.1016/0014-4894(79)90056-0. [DOI] [PubMed] [Google Scholar]
  18. Premawansa S., Gamage-Mendis A., Perera L., Begarnie S., Mendis K., Carter R. Plasmodium falciparum malaria transmission-blocking immunity under conditions of low endemicity as in Sri Lanka. Parasite Immunol. 1994 Jan;16(1):35–42. doi: 10.1111/j.1365-3024.1994.tb00302.x. [DOI] [PubMed] [Google Scholar]
  19. Quakyi I. A., Carter R., Rener J., Kumar N., Good M. F., Miller L. H. The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies. J Immunol. 1987 Dec 15;139(12):4213–4217. [PubMed] [Google Scholar]
  20. Ranawaka G. R., Alejo-Blanco A. R., Sinden R. E. Characterization of the effector mechanisms of a transmission-blocking antibody upon differentiation of Plasmodium berghei gametocytes into ookinetes in vitro. Parasitology. 1994 Jul;109(Pt 1):11–17. doi: 10.1017/s0031182000077702. [DOI] [PubMed] [Google Scholar]
  21. Read D., Lensen A. H., Begarnie S., Haley S., Raza A., Carter R. Transmission-blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pfs230 are all complement-fixing. Parasite Immunol. 1994 Oct;16(10):511–519. doi: 10.1111/j.1365-3024.1994.tb00305.x. [DOI] [PubMed] [Google Scholar]
  22. Rener J., Graves P. M., Carter R., Williams J. L., Burkot T. R. Target antigens of transmission-blocking immunity on gametes of plasmodium falciparum. J Exp Med. 1983 Sep 1;158(3):976–981. doi: 10.1084/jem.158.3.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Riley E. M., Bennett S., Jepson A., Hassan-King M., Whittle H., Olerup O., Carter R. Human antibody responses to Pfs 230, a sexual stage-specific surface antigen of Plasmodium falciparum: non-responsiveness is a stable phenotype but does not appear to be genetically regulated. Parasite Immunol. 1994 Feb;16(2):55–62. doi: 10.1111/j.1365-3024.1994.tb00323.x. [DOI] [PubMed] [Google Scholar]
  24. Riley E. M., Ong C. S., Olerup O., Eida S., Allen S. J., Bennett S., Andersson G., Targett G. A. Cellular and humoral immune responses to Plasmodium falciparum gametocyte antigens in malaria-immune individuals. Limited response to the 48/45-kilodalton surface antigen does not appear to be due to MHC restriction. J Immunol. 1990 Jun 15;144(12):4810–4816. [PubMed] [Google Scholar]
  25. Roeffen W., Beckers P. J., Teelen K., Lensen T., Sauerwein R. W., Meuwissen J. H., Eling W. Plasmodium falciparum: a comparison of the activity of Pfs230-specific antibodies in an assay of transmission-blocking immunity and specific competition ELISAs. Exp Parasitol. 1995 Feb;80(1):15–26. doi: 10.1006/expr.1995.1003. [DOI] [PubMed] [Google Scholar]
  26. Roeffen W., Geeraedts F., Eling W., Beckers P., Wizel B., Kumar N., Lensen T., Sauerwein R. Transmission blockade of Plasmodium falciparum malaria by anti-Pfs230-specific antibodies is isotype dependent. Infect Immun. 1995 Feb;63(2):467–471. doi: 10.1128/iai.63.2.467-471.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roeffen W., Lensen T., Mulder B., Teelen K., Sauerwein R., Van Druten J., Eling W., Meuwissen J. H., Beckers P. J. A comparison of transmission-blocking activity with reactivity in a Plasmodium falciparum 48/45-kD molecule-specific competition enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1995 Jan;52(1):60–65. doi: 10.4269/ajtmh.1995.52.60. [DOI] [PubMed] [Google Scholar]
  28. Targett G. A. Plasmodium falciparum: natural and experimental transmission-blocking immunity. Immunol Lett. 1988 Nov;19(3):235–240. doi: 10.1016/0165-2478(88)90148-4. [DOI] [PubMed] [Google Scholar]
  29. Taylor R. R., Smith D. B., Robinson V. J., McBride J. S., Riley E. M. Human antibody response to Plasmodium falciparum merozoite surface protein 2 is serogroup specific and predominantly of the immunoglobulin G3 subclass. Infect Immun. 1995 Nov;63(11):4382–4388. doi: 10.1128/iai.63.11.4382-4388.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vermeulen A. N., Ponnudurai T., Beckers P. J., Verhave J. P., Smits M. A., Meuwissen J. H. Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. J Exp Med. 1985 Nov 1;162(5):1460–1476. doi: 10.1084/jem.162.5.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vermeulen A. N., Roeffen W. F., Henderik J. B., Ponnudurai T., Beckers P. J., Meuwissen J. H. Plasmodium falciparum transmission blocking monoclonal antibodies recognize monovalently expressed epitopes. Dev Biol Stand. 1985;62:91–97. [PubMed] [Google Scholar]
  32. Vermeulen A. N., van Deursen J., Brakenhoff R. H., Lensen T. H., Ponnudurai T., Meuwissen J. H. Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Mol Biochem Parasitol. 1986 Aug;20(2):155–163. doi: 10.1016/0166-6851(86)90027-7. [DOI] [PubMed] [Google Scholar]
  33. Walliker D., Quakyi I. A., Wellems T. E., McCutchan T. F., Szarfman A., London W. T., Corcoran L. M., Burkot T. R., Carter R. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987 Jun 26;236(4809):1661–1666. doi: 10.1126/science.3299700. [DOI] [PubMed] [Google Scholar]
  34. Williamson K. C., Criscio M. D., Kaslow D. C. Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen, Pfs230. Mol Biochem Parasitol. 1993 Apr;58(2):355–358. doi: 10.1016/0166-6851(93)90058-6. [DOI] [PubMed] [Google Scholar]
  35. Williamson K. C., Fujioka H., Aikawa M., Kaslow D. C. Stage-specific processing of Pfs230, a Plasmodium falciparum transmission-blocking vaccine candidate. Mol Biochem Parasitol. 1996 Jun;78(1-2):161–169. doi: 10.1016/s0166-6851(96)02621-7. [DOI] [PubMed] [Google Scholar]
  36. Williamson K. C., Keister D. B., Muratova O., Kaslow D. C. Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. Mol Biochem Parasitol. 1995 Dec;75(1):33–42. doi: 10.1016/0166-6851(95)02507-3. [DOI] [PubMed] [Google Scholar]
  37. Wizel B., Kumar N. Identification of a continuous and cross-reacting epitope for Plasmodium falciparum transmission-blocking immunity. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9533–9537. doi: 10.1073/pnas.88.21.9533. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES