Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3048–3056. doi: 10.1128/iai.65.8.3048-3056.1997

Attenuation and vaccine potential of aroQ mutants of Corynebacterium pseudotuberculosis.

C P Simmons 1, A L Hodgson 1, R A Strugnell 1
PMCID: PMC175430  PMID: 9234753

Abstract

Corynebacterium pseudotuberculosis, a gram-positive intracellular bacterial pathogen, is the etiological agent of the disease caseous lymphadenitis (CLA) in both sheep and goats. Attenuated mutants of C. pseudotuberculosis have the potential to act as novel live veterinary vaccine vectors. We have cloned and sequenced the aroB and aroQ genes from C. pseudotuberculosis C231. By allelic exchange, aroQ mutants of both C231, designated CS100, and a pld mutant strain TB521, designated CS200, were constructed. Infection of BALB/c mice indicated that introduction of the aroQ mutation into C231 and TB521 attenuated both strains. In sublethally infected BALB/c mice, both CS100 and CS200 were cleared from spleens and livers by day 8 postinfection. The in vivo persistence of these strains was increased when the intact aroQ gene was supplied on a plasmid in trans. Mice infected with TB521 harbored bacteria in organs at least till day 8 postinfection without ill effect. When used as a vaccine, only the maximum tolerated dose of CS100 had the capacity to protect mice from homologous challenge. Vaccination with TB521 also elicited protective immunity, and this was associated with gamma interferon (IFN-gamma) production from splenocytes stimulated 7 days postvaccination. The role of IFN-gamma in controlling primary infections with C. pseudotuberculosis was examined in mice deficient for the IFN-gamma receptor (IFN-gammaR(-/-) mice). IFN-gammaR(-/-) mice cleared an infection with CS100 but were significantly more susceptible than control littermates to infection with C231 or TB521. These studies support an important role for IFN-gamma in control of primary C. pseudotuberculosis infections and indicate that aroQ mutants remain attenuated even in immunocompromised animals. This is the first report of an aroQ mutant of a bacterial pathogen, and the results may have implications for the construction of aromatic mutants of Mycobacterium tuberculosis for use as vaccines.

Full Text

The Full Text of this article is available as a PDF (667.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. E., Andrew P. W., Jones D., Roberts I. S. Characterization of an aromatic amino acid-dependent Listeria monocytogenes mutant: attenuation, persistence, and ability to induce protective immunity in mice. Infect Immun. 1993 May;61(5):2245–2248. doi: 10.1128/iai.61.5.2245-2248.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balasubramanian V., Pavelka M. S., Jr, Bardarov S. S., Martin J., Weisbrod T. R., McAdam R. A., Bloom B. R., Jacobs W. R., Jr Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol. 1996 Jan;178(1):273–279. doi: 10.1128/jb.178.1.273-279.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batey R. G. Pathogenesis of caseous lymphadenitis in sheep and goats. Aust Vet J. 1986 Sep;63(9):269–272. doi: 10.1111/j.1751-0813.1986.tb08064.x. [DOI] [PubMed] [Google Scholar]
  4. Bowe F., O'Gaora P., Maskell D., Cafferkey M., Dougan G. Virulence, persistence, and immunogenicity of Yersinia enterocolitica O:8 aroA mutants. Infect Immun. 1989 Oct;57(10):3234–3236. doi: 10.1128/iai.57.10.3234-3236.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins F. M. Vaccines and cell-mediated immunity. Bacteriol Rev. 1974 Dec;38(4):371–402. doi: 10.1128/br.38.4.371-402.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenstein T. K., Sultzer B. M. Immunity to Salmonella infection. Adv Exp Med Biol. 1983;162:261–296. doi: 10.1007/978-1-4684-4481-0_26. [DOI] [PubMed] [Google Scholar]
  7. Garbe T., Servos S., Hawkins A., Dimitriadis G., Young D., Dougan G., Charles I. The Mycobacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Mol Gen Genet. 1991 Sep;228(3):385–392. doi: 10.1007/BF00260631. [DOI] [PubMed] [Google Scholar]
  8. Geever R. F., Huiet L., Baum J. A., Tyler B. M., Patel V. B., Rutledge B. J., Case M. E., Giles N. H. DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol. 1989 May 5;207(1):15–34. doi: 10.1016/0022-2836(89)90438-5. [DOI] [PubMed] [Google Scholar]
  9. Hard G. C. Adoptive transfer of immunity in experimental Corynebacterium ovis infection. J Comp Pathol. 1970 Apr;80(2):329–334. doi: 10.1016/0021-9975(70)90103-9. [DOI] [PubMed] [Google Scholar]
  10. Hard G. C. Comparative toxic effect of the surface lipid of Corynebacterium ovis on peritoneal macrophages. Infect Immun. 1975 Dec;12(6):1439–1449. doi: 10.1128/iai.12.6.1439-1449.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hawkins A. R., Lamb H. K., Smith M., Keyte J. W., Roberts C. F. Molecular organisation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. Mol Gen Genet. 1988 Oct;214(2):224–231. doi: 10.1007/BF00337715. [DOI] [PubMed] [Google Scholar]
  12. Hess J., Ladel C., Miko D., Kaufmann S. H. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol. 1996 May 1;156(9):3321–3326. [PubMed] [Google Scholar]
  13. Hodgson A. L., Krywult J., Corner L. A., Rothel J. S., Radford A. J. Rational attenuation of Corynebacterium pseudotuberculosis: potential cheesy gland vaccine and live delivery vehicle. Infect Immun. 1992 Jul;60(7):2900–2905. doi: 10.1128/iai.60.7.2900-2905.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hodgson A. L., Krywult J., Radford A. J. Nucleotide sequence of the erythromycin resistance gene from the Corynebacterium plasmid pNG2. Nucleic Acids Res. 1990 Apr 11;18(7):1891–1891. doi: 10.1093/nar/18.7.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hodgson A. L., Tachedjian M., Corner L. A., Radford A. J. Protection of sheep against caseous lymphadenitis by use of a single oral dose of live recombinant Corynebacterium pseudotuberculosis. Infect Immun. 1994 Dec;62(12):5275–5280. doi: 10.1128/iai.62.12.5275-5280.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. doi: 10.1016/0378-1119(80)90069-4. [DOI] [PubMed] [Google Scholar]
  17. Hoiseth S. K., Stocker B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981 May 21;291(5812):238–239. doi: 10.1038/291238a0. [DOI] [PubMed] [Google Scholar]
  18. Homchampa P., Strugnell R. A., Adler B. Molecular analysis of the aroA gene of Pasteurella multocida and vaccine potential of a constructed aroA mutant. Mol Microbiol. 1992 Dec;6(23):3585–3593. doi: 10.1111/j.1365-2958.1992.tb01794.x. [DOI] [PubMed] [Google Scholar]
  19. Huang S., Hendriks W., Althage A., Hemmi S., Bluethmann H., Kamijo R., Vilcek J., Zinkernagel R. M., Aguet M. Immune response in mice that lack the interferon-gamma receptor. Science. 1993 Mar 19;259(5102):1742–1745. doi: 10.1126/science.8456301. [DOI] [PubMed] [Google Scholar]
  20. Ivins B. E., Welkos S. L., Knudson G. B., Little S. F. Immunization against anthrax with aromatic compound-dependent (Aro-) mutants of Bacillus anthracis and with recombinant strains of Bacillus subtilis that produce anthrax protective antigen. Infect Immun. 1990 Feb;58(2):303–308. doi: 10.1128/iai.58.2.303-308.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jacobs W. R., Barrett J. F., Clark-Curtiss J. E., Curtiss R., 3rd In vivo repackaging of recombinant cosmid molecules for analyses of Salmonella typhimurium, Streptococcus mutans, and mycobacterial genomic libraries. Infect Immun. 1986 Apr;52(1):101–109. doi: 10.1128/iai.52.1.101-109.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jolly R. D. The pathogenic action of the exotoxin of Corynebacterium ovis. J Comp Pathol. 1965 Oct;75(4):417–431. doi: 10.1016/0021-9975(65)90022-8. [DOI] [PubMed] [Google Scholar]
  23. Karem K. L., Chatfield S., Kuklin N., Rouse B. T. Differential induction of carrier antigen-specific immunity by Salmonella typhimurium live-vaccine strains after single mucosal or intravenous immunization of BALB/c mice. Infect Immun. 1995 Dec;63(12):4557–4563. doi: 10.1128/iai.63.12.4557-4563.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaufmann S. H. Immunity to intracellular bacteria. Annu Rev Immunol. 1993;11:129–163. doi: 10.1146/annurev.iy.11.040193.001021. [DOI] [PubMed] [Google Scholar]
  25. Lalonde G., O'Hanley P. D., Stocker B. A., Denich K. T. Characterization of a 3-dehydroquinase gene from Actinobacillus pleuropneumoniae with homology to the eukaryotic genes qa-2 and QUTE. Mol Microbiol. 1994 Jan;11(2):273–280. doi: 10.1111/j.1365-2958.1994.tb00307.x. [DOI] [PubMed] [Google Scholar]
  26. Levine M. M., Herrington D., Murphy J. R., Morris J. G., Losonsky G., Tall B., Lindberg A. A., Svenson S., Baqar S., Edwards M. F. Safety, infectivity, immunogenicity, and in vivo stability of two attenuated auxotrophic mutant strains of Salmonella typhi, 541Ty and 543Ty, as live oral vaccines in humans. J Clin Invest. 1987 Mar;79(3):888–902. doi: 10.1172/JCI112899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nnalue N. A., Stocker B. A. Test of the virulence and live-vaccine efficacy of auxotrophic and galE derivatives of Salmonella choleraesuis. Infect Immun. 1987 Apr;55(4):955–962. doi: 10.1128/iai.55.4.955-962.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Callaghan D., Maskell D., Liew F. Y., Easmon C. S., Dougan G. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun. 1988 Feb;56(2):419–423. doi: 10.1128/iai.56.2.419-423.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oyston P. C., Russell P., Williamson E. D., Titball R. W. An aroA mutant of Yersinia pestis is attenuated in guinea-pigs, but virulent in mice. Microbiology. 1996 Jul;142(Pt 7):1847–1853. doi: 10.1099/13500872-142-7-1847. [DOI] [PubMed] [Google Scholar]
  30. Paton M. W., Mercy A. R., Wilkinson F. C., Gardner J. J., Sutherland S. S., Ellis T. M. The effects of caseous lymphadenitis on wool production and bodyweight in young sheep. Aust Vet J. 1988 Apr;65(4):117–119. doi: 10.1111/j.1751-0813.1988.tb14429.x. [DOI] [PubMed] [Google Scholar]
  31. Pittard J., Wallace B. J. Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J Bacteriol. 1966 Apr;91(4):1494–1508. doi: 10.1128/jb.91.4.1494-1508.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pogson C. A., Simmons C. P., Strugnell R. A., Hodgson A. L. Cloning and manipulation of the Corynebacterium pseudotuberculosis recA gene for live vaccine vector development. FEMS Microbiol Lett. 1996 Sep 1;142(2-3):139–145. doi: 10.1111/j.1574-6968.1996.tb08421.x. [DOI] [PubMed] [Google Scholar]
  33. Radford A. J., Hodgson A. L. Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector. Plasmid. 1991 Mar;25(2):149–153. doi: 10.1016/0147-619x(91)90029-v. [DOI] [PubMed] [Google Scholar]
  34. Roberts M., Maskell D., Novotny P., Dougan G. Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect Immun. 1990 Mar;58(3):732–739. doi: 10.1128/iai.58.3.732-739.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schijns V. E., Haagmans B. L., Rijke E. O., Huang S., Aguet M., Horzinek M. C. IFN-gamma receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses. J Immunol. 1994 Sep 1;153(5):2029–2037. [PubMed] [Google Scholar]
  36. Swihart K., Fruth U., Messmer N., Hug K., Behin R., Huang S., Del Giudice G., Aguet M., Louis J. A. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J Exp Med. 1995 Mar 1;181(3):961–971. doi: 10.1084/jem.181.3.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Szalay G., Ladel C. H., Kaufmann S. H. Stimulation of protective CD8+ T lymphocytes by vaccination with nonliving bacteria. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12389–12392. doi: 10.1073/pnas.92.26.12389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tachedjian M., Krywult J., Moore R. J., Hodgson A. L. Caseous lymphadenitis vaccine development: site-specific inactivation of the Corynebacterium pseudotuberculosis phospholipase D gene. Vaccine. 1995 Dec;13(18):1785–1792. doi: 10.1016/0264-410x(95)00144-p. [DOI] [PubMed] [Google Scholar]
  39. Vaughan L. M., Smith P. R., Foster T. J. An aromatic-dependent mutant of the fish pathogen Aeromonas salmonicida is attenuated in fish and is effective as a live vaccine against the salmonid disease furunculosis. Infect Immun. 1993 May;61(5):2172–2181. doi: 10.1128/iai.61.5.2172-2181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Verma N. K., Lindberg A. A. Construction of aromatic dependent Shigella flexneri 2a live vaccine candidate strains: deletion mutations in the aroA and the aroD genes. Vaccine. 1991 Jan;9(1):6–9. doi: 10.1016/0264-410x(91)90308-s. [DOI] [PubMed] [Google Scholar]
  41. Zhang Y., Praszkier J., Hodgson A., Pittard A. J. Molecular analysis and characterization of a broad-host-range plasmid, pEP2. J Bacteriol. 1994 Sep;176(18):5718–5728. doi: 10.1128/jb.176.18.5718-5728.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES