Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3074–3079. doi: 10.1128/iai.65.8.3074-3079.1997

Gut intraepithelial lymphocytes induce immunity against Cryptosporidium infection through a mechanism involving gamma interferon production.

R J Culshaw 1, G J Bancroft 1, V McDonald 1
PMCID: PMC175433  PMID: 9234756

Abstract

Immunological control of infection with cryptosporidia in mice is dependent on CD4+ T cells and the production of gamma interferon (IFN-gamma), but to date, the mucosal T cells which produce IFN-gamma local to the infection have not been characterized. We previously showed that immunity against the gastric parasite Cryptosporidium muris could be adoptively transferred to adult SCID (severe combined immunodeficiency) mice with small intestinal intraepithelial lymphocytes (IEL) from previously infected immunocompetent mice, but only if the donor CD4+ T cells were intact. The present investigation examined whether IFN-gamma was important in the effector mechanisms mediated by immune IEL in SCID mice. The development of resistance against C. muris infection in SCID mice given immune IEL was prevented by treatment with a hamster anti-mouse IFN-gamma-neutralizing monoclonal antibody, but following cessation of antibody treatment, the mice recovered from infection. In further experiments, an enzyme-linked immunospot (ELISPOT) technique was used to compare frequencies of IFN-gamma-producing cells in activated T-cell populations from C. muris-immune and naive donor mice. Stimulation with concanavalin A or a rat anti-mouse CD3 monoclonal antibody resulted in detection of greater numbers of cells producing IFN-gamma from immune than naive IEL populations. Small numbers of IEL from C. muris-immune mice, but not from naive mice, also produced IFN-gamma when cultured with soluble oocyst antigen, but this occurred only if gamma-irradiated spleen cells were cocultured with the immune IEL. These results suggested that IEL were important in the generation of immunity to Cryptosporidium and that one of their crucial functions was to produce IFN-gamma at the site of infection.

Full Text

The Full Text of this article is available as a PDF (188.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas A. K., Murphy K. M., Sher A. Functional diversity of helper T lymphocytes. Nature. 1996 Oct 31;383(6603):787–793. doi: 10.1038/383787a0. [DOI] [PubMed] [Google Scholar]
  2. Bancroft G. J., Schreiber R. D., Bosma G. C., Bosma M. J., Unanue E. R. A T cell-independent mechanism of macrophage activation by interferon-gamma. J Immunol. 1987 Aug 15;139(4):1104–1107. [PubMed] [Google Scholar]
  3. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  4. Chardès T., Buzoni-Gatel D., Lepage A., Bernard F., Bout D. Toxoplasma gondii oral infection induces specific cytotoxic CD8 alpha/beta+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J Immunol. 1994 Nov 15;153(10):4596–4603. [PubMed] [Google Scholar]
  5. Chen W., Harp J. A., Harmsen A. G., Havell E. A. Gamma interferon functions in resistance to Cryptosporidium parvum infection in severe combined immunodeficient mice. Infect Immun. 1993 Aug;61(8):3548–3551. doi: 10.1128/iai.61.8.3548-3551.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen W., Harp J. A., Harmsen A. G. Requirements for CD4+ cells and gamma interferon in resolution of established Cryptosporidium parvum infection in mice. Infect Immun. 1993 Sep;61(9):3928–3932. doi: 10.1128/iai.61.9.3928-3932.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Current W. L., Garcia L. S. Cryptosporidiosis. Clin Microbiol Rev. 1991 Jul;4(3):325–358. doi: 10.1128/cmr.4.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davami M. H., Bancroft G. J., McDonald V. Cryptosporidium infection in major histocompatibility complex congeneic strains of mice: variation in susceptibility and the role of T-cell cytokine responses. Parasitol Res. 1997;83(3):257–263. doi: 10.1007/s004360050243. [DOI] [PubMed] [Google Scholar]
  9. Dillon S. B., Dalton B. J., MacDonald T. T. Lymphokine production by mitogen and antigen activated mouse intraepithelial lymphocytes. Cell Immunol. 1986 Dec;103(2):326–338. doi: 10.1016/0008-8749(86)90093-6. [DOI] [PubMed] [Google Scholar]
  10. Harp J. A., Whitmire W. M., Sacco R. In vitro proliferation and production of gamma interferon by murine CD4+ cells in response to Cryptosporidium parvum antigen. J Parasitol. 1994 Feb;80(1):67–72. [PubMed] [Google Scholar]
  11. Heine J., Moon H. W., Woodmansee D. B. Persistent Cryptosporidium infection in congenitally athymic (nude) mice. Infect Immun. 1984 Mar;43(3):856–859. doi: 10.1128/iai.43.3.856-859.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kapel N., Benhamou Y., Buraud M., Magne D., Opolon P., Gobert J. G. Kinetics of mucosal ileal gamma-interferon response during cryptosporidiosis in immunocompetent neonatal mice. Parasitol Res. 1996;82(8):664–667. doi: 10.1007/s004360050182. [DOI] [PubMed] [Google Scholar]
  13. Kogut M. H., Lange C. Interferon-gamma-mediated inhibition of the development of Eimeria tenella in cultured cells. J Parasitol. 1989 Apr;75(2):313–317. [PubMed] [Google Scholar]
  14. Lefrançois L. Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire? Immunol Today. 1991 Dec;12(12):436–438. doi: 10.1016/0167-5699(91)90015-L. [DOI] [PubMed] [Google Scholar]
  15. McDonald V., Bancroft G. J. Mechanisms of innate and acquired resistance to Cryptosporidium parvum infection in SCID mice. Parasite Immunol. 1994 Jun;16(6):315–320. doi: 10.1111/j.1365-3024.1994.tb00354.x. [DOI] [PubMed] [Google Scholar]
  16. McDonald V., Deer R., Uni S., Iseki M., Bancroft G. J. Immune responses to Cryptosporidium muris and Cryptosporidium parvum in adult immunocompetent or immunocompromised (nude and SCID) mice. Infect Immun. 1992 Aug;60(8):3325–3331. doi: 10.1128/iai.60.8.3325-3331.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McDonald V., Robinson H. A., Kelly J. P., Bancroft G. J. Cryptosporidium muris in adult mice: adoptive transfer of immunity and protective roles of CD4 versus CD8 cells. Infect Immun. 1994 Jun;62(6):2289–2294. doi: 10.1128/iai.62.6.2289-2294.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McDonald V., Robinson H. A., Kelly J. P., Bancroft G. J. Immunity to Cryptosporidium muris infection in mice is expressed through gut CD4+ intraepithelial lymphocytes. Infect Immun. 1996 Jul;64(7):2556–2562. doi: 10.1128/iai.64.7.2556-2562.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller C. J., McGhee J. R., Gardner M. B. Mucosal immunity, HIV transmission, and AIDS. Lab Invest. 1993 Feb;68(2):129–145. [PubMed] [Google Scholar]
  20. Offit P. A., Dudzik K. I. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J Virol. 1989 Aug;63(8):3507–3512. doi: 10.1128/jvi.63.8.3507-3512.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perryman L. E., Mason P. H., Chrisp C. E. Effect of spleen cell populations on resolution of Cryptosporidium parvum infection in SCID mice. Infect Immun. 1994 Apr;62(4):1474–1477. doi: 10.1128/iai.62.4.1474-1477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pfefferkorn E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A. 1984 Feb;81(3):908–912. doi: 10.1073/pnas.81.3.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shields J. G., Parrott D. M. Appearance of delayed-type hypersensitivity effector cells in murine gut mucosa. Immunology. 1985 Apr;54(4):771–776. [PMC free article] [PubMed] [Google Scholar]
  24. Sim G. K. Intraepithelial lymphocytes and the immune system. Adv Immunol. 1995;58:297–343. doi: 10.1016/s0065-2776(08)60622-7. [DOI] [PubMed] [Google Scholar]
  25. Suzuki Y., Conley F. K., Remington J. S. Treatment of toxoplasmic encephalitis in mice with recombinant gamma interferon. Infect Immun. 1990 Sep;58(9):3050–3055. doi: 10.1128/iai.58.9.3050-3055.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sydora B. C., Mixter P. F., Holcombe H. R., Eghtesady P., Williams K., Amaral M. C., Nel A., Kronenberg M. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J Immunol. 1993 Mar 15;150(6):2179–2191. [PubMed] [Google Scholar]
  27. Taguchi T., McGhee J. R., Coffman R. L., Beagley K. W., Eldridge J. H., Takatsu K., Kiyono H. Analysis of Th1 and Th2 cells in murine gut-associated tissues. Frequencies of CD4+ and CD8+ T cells that secrete IFN-gamma and IL-5. J Immunol. 1990 Jul 1;145(1):68–77. [PubMed] [Google Scholar]
  28. Tilley M., McDonald V., Bancroft G. J. Resolution of cryptosporidial infection in mice correlates with parasite-specific lymphocyte proliferation associated with both Th1 and Th2 cytokine secretion. Parasite Immunol. 1995 Sep;17(9):459–464. doi: 10.1111/j.1365-3024.1995.tb00915.x. [DOI] [PubMed] [Google Scholar]
  29. Ungar B. L., Burris J. A., Quinn C. A., Finkelman F. D. New mouse models for chronic Cryptosporidium infection in immunodeficient hosts. Infect Immun. 1990 Apr;58(4):961–969. doi: 10.1128/iai.58.4.961-969.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ungar B. L., Kao T. C., Burris J. A., Finkelman F. D. Cryptosporidium infection in an adult mouse model. Independent roles for IFN-gamma and CD4+ T lymphocytes in protective immunity. J Immunol. 1991 Aug 1;147(3):1014–1022. [PubMed] [Google Scholar]
  31. Urban J. F., Jr, Fayer R., Chen S. J., Gause W. C., Gately M. K., Finkelman F. D. IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J Immunol. 1996 Jan 1;156(1):263–268. [PubMed] [Google Scholar]
  32. Valente G., Ozmen L., Novelli F., Geuna M., Palestro G., Forni G., Garotta G. Distribution of interferon-gamma receptor in human tissues. Eur J Immunol. 1992 Sep;22(9):2403–2412. doi: 10.1002/eji.1830220933. [DOI] [PubMed] [Google Scholar]
  33. Viney J. L., MacDonald T. T. Lymphokine secretion and proliferation of intraepithelial lymphocytes from murine small intestine. Immunology. 1992 Sep;77(1):19–24. [PMC free article] [PubMed] [Google Scholar]
  34. Waters W. R., Harp J. A. Cryptosporidium parvum infection in T-cell receptor (TCR)-alpha- and TCR-delta-deficient mice. Infect Immun. 1996 May;64(5):1854–1857. doi: 10.1128/iai.64.5.1854-1857.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamamoto S., Russ F., Teixeira H. C., Conradt P., Kaufmann S. H. Listeria monocytogenes-induced gamma interferon secretion by intestinal intraepithelial gamma/delta T lymphocytes. Infect Immun. 1993 May;61(5):2154–2161. doi: 10.1128/iai.61.5.2154-2161.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES