Abstract
Objective: To examine the role of tartrate resistant acid phosphatase (TRAP) positive mononuclear and multinucleated cells in the destruction of articular cartilage in patients with rheumatoid arthritis (RA).
Methods: The presence of TRAP positive cells in the synovial tissue of patients with RA was examined by enzyme histochemistry and immunohistochemistry. Expression of mRNAs for matrix metalloproteinases (MMPs) was assessed by the reverse transcriptase-polymerase chain reaction (RT-PCR) and northern blot analysis. Production of MMPs by mononuclear and multinucleated TRAP positive cells was examined by immunocytochemistry, enzyme linked immunosorbent assay (ELISA) of conditioned medium, and immunohistochemistry of human RA synovial tissue. In addition, a cartilage degradation assay was performed by incubation of 35S prelabelled cartilage discs with TRAP positive cells.
Results: TRAP positive mononuclear cells and multinucleated cells were found in proliferating synovial tissue adjacent to the bone-cartilage interface in patients with RA. Expression of MMP-2 (gelatinase A), MMP-9 (gelatinase B), MMP-12 (macrophage metalloelastase), and MMP-14 (MT1-MMP) mRNA was detected in TRAP positive mononuclear and multinucleated cells by both RT-PCR and northern blot analysis. Immunocytochemistry for these MMPs showed that MMP-2 and MMP-9 were produced by both TRAP positive mononuclear and multinucleated cells, whereas MMP-12 and MMP-14 were produced by TRAP positive multinucleated cells. MMP-2 and MMP-9 were detected in the conditioned medium of TRAP positive mononuclear cells. TRAP positive mononuclear cells also induced the release of 35S from prelabelled cartilage discs.
Conclusion: This study suggests that TRAP positive mononuclear and multinucleated cells located in the synovium at the cartilage-synovial interface produce MMP-2 and MMP-9, and may have an important role in articular cartilage destruction in patients with RA.
Full Text
The Full Text of this article is available as a PDF (259.7 KB).
Figure 1.
Expression of mRNAs for matrix metalloproteinases by CD14 positive monocytes, TRAP positive mononuclear cells (TPMoC), and TRAP positive multinucleated cells (TPMuC). (A) RT-PCR analysis. (B) Northern blot analysis.
Figure 2.
Expression of matrix metalloproteinases in CD14 positive monocytes, TRAP positive mononuclear cells (TPMoC), and TRAP positive multinucleated cells (TPMuC) as demonstrated by immunocytochemical analysis. MMP-2, MMP-9, MMP-12, and MMP-14 were expressed by TPMuC (C, F, I, and L), while additional expression of MMP-2 and MMP-9 was seen in TPMoC (B and E). (A, D, G, and J) CD14 positive monocytes; (B, E, H, and K) TPMoC; (C, F, I, and L) TPMuC. (A, B, and C) MMP-2; (D, E, and F) MMP-9; (G, H, and I) MMP-12; (J, K, and L) MMP-14. Bar = 100 µm in A, D, G, and J; bar = 50 µm in B, C, E, F, H, I, K, and L.
Figure 3.
Immunolocalisation of MMP-2 and MMP-9 in RA synovial tissue at the bone-cartilage interface. (A and D) TRAP staining, serial section. Mononuclear (arrows) and multinucleated cells (arrowheads) in RA synovial tissue at the bone-cartilage interface display TRAP activity. (B and E) Immunohistochemistry for MMP-2 and MMP-9. The TRAP positive mononuclear and multinucleated cells shown in A and D express MMP-2 and MMP-9. (C and F) Isotype controls for B and E. Haematoxylin counterstaining was performed in B, C, E, and F. Bar = 100 µm.
Figure 4.
Immunostaining for MMP-2 or MMP-9 combined with TRAP staining of RA synovial tissue at the bone-cartilage interface. (A and D) Immunostaining for MMP-2 or MMP-9. Mononuclear cells (arrows) and multinucleated cells (arrowheads) in RA synovial tissue at the bone-cartilage interface express MMP-2 and MMP-9. (B and E) Immunostaining for MMP-2 or MMP-9 combined with TRAP staining. The TRAP positive cells are positive for MMP-2 and MMP-9. (C and F) Isotype controls for A and D combined with TRAP staining. Bar = 50 µm.
Figure 5.
Degradation of cartilage by TRAP positive mononuclear cells (TPMoC). Bars show the mean percentage and SD of 35S release on day 7 in 10 replicate cultures when radiolabelled cartilage discs were cultured in the presence (TPMoC) or absence of TPMoC (disc). The percentage degradation with and without collagenase I pretreatment is shown. *p<0.01 for disc v TPMoC (Mann-Whitney test).
Figure 6.
Secretion of MMP-2 (A) and MMP-9 (B) into culture supernatant on day 7 in 10 replicate cultures when radiolabelled cartilage discs were incubated in the presence of TRAP positive mononuclear cells (TPMoC) or in the absence of such cells (disc). *, **p<0.01 for disc v TPMoC (Mann-Whitney test).
Figure 7.
A neutralisation experiment in the cartilage degradation assay was performed by adding a blocking agent for MMP-2 and MMP-9 to cultures of TRAP positive mononuclear cells. The inhibitor (100 µmol/l) blocked cartilage degradation. The mean percentage and SD shown in each column were calculated from 10 values of two identical experiments. *, **p<0.01 for 0 µmol/l v 100 µmol/l and 10 µmol/l v 100 µmol/l (Mann-Whitney test).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnett F. C., Edworthy S. M., Bloch D. A., McShane D. J., Fries J. F., Cooper N. S., Healey L. A., Kaplan S. R., Liang M. H., Luthra H. S. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988 Mar;31(3):315–324. doi: 10.1002/art.1780310302. [DOI] [PubMed] [Google Scholar]
- Azuma Y., Kaji K., Katogi R., Takeshita S., Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 2000 Feb 18;275(7):4858–4864. doi: 10.1074/jbc.275.7.4858. [DOI] [PubMed] [Google Scholar]
- Brooks P. C., Strömblad S., Sanders L. C., von Schalscha T. L., Aimes R. T., Stetler-Stevenson W. G., Quigley J. P., Cheresh D. A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 1996 May 31;85(5):683–693. doi: 10.1016/s0092-8674(00)81235-0. [DOI] [PubMed] [Google Scholar]
- Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunnane G., FitzGerald O., Hummel K. M., Gay R. E., Gay S., Bresnihan B. Collagenase, cathepsin B and cathepsin L gene expression in the synovial membrane of patients with early inflammatory arthritis. Rheumatology (Oxford) 1999 Jan;38(1):34–42. doi: 10.1093/rheumatology/38.1.34. [DOI] [PubMed] [Google Scholar]
- Delaissé J. M., Engsig M. T., Everts V., del Carmen Ovejero M., Ferreras M., Lund L., Vu T. H., Werb Z., Winding B., Lochter A. Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta. 2000 Feb 15;291(2):223–234. doi: 10.1016/s0009-8981(99)00230-2. [DOI] [PubMed] [Google Scholar]
- Fujikawa Y., Shingu M., Torisu T., Itonaga I., Masumi S. Bone resorption by tartrate-resistant acid phosphatase-positive multinuclear cells isolated from rheumatoid synovium. Br J Rheumatol. 1996 Mar;35(3):213–217. doi: 10.1093/rheumatology/35.3.213. [DOI] [PubMed] [Google Scholar]
- Gravallese E. M., Harada Y., Wang J. T., Gorn A. H., Thornhill T. S., Goldring S. R. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol. 1998 Apr;152(4):943–951. [PMC free article] [PubMed] [Google Scholar]
- Gravallese E. M., Manning C., Tsay A., Naito A., Pan C., Amento E., Goldring S. R. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000 Feb;43(2):250–258. doi: 10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Itonaga I., Fujikawa Y., Sabokbar A., Murray D. W., Athanasou N. A. Rheumatoid arthritis synovial macrophage-osteoclast differentiation is osteoprotegerin ligand-dependent. J Pathol. 2000 Sep;192(1):97–104. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH672>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Janusz M. J., Hare M. Cartilage degradation by cocultures of transformed macrophage and fibroblast cell lines. A model of metalloproteinase-mediated connective tissue degradation. J Immunol. 1993 Mar 1;150(5):1922–1931. [PubMed] [Google Scholar]
- Jovanovic D. V., Martel-Pelletier J., Di Battista J. A., Mineau F., Jolicoeur F. C., Benderdour M., Pelletier J. P. Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages: a possible role in rheumatoid arthritis. Arthritis Rheum. 2000 May;43(5):1134–1144. doi: 10.1002/1529-0131(200005)43:5<1134::AID-ANR24>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Kaneko M., Tomita T., Nakase T., Ohsawa Y., Seki H., Takeuchi E., Takano H., Shi K., Takahi K., Kominami E. Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis. Rheumatology (Oxford) 2001 Mar;40(3):247–255. doi: 10.1093/rheumatology/40.3.247. [DOI] [PubMed] [Google Scholar]
- Kaneko M., Tomita T., Nakase T., Takeuchi E., Iwasaki M., Sugamoto K., Yonenobu K., Ochi T. Rapid decalcification using microwaves for in situ hybridization in skeletal tissues. Biotech Histochem. 1999 Jan;74(1):49–54. doi: 10.3109/10520299909066477. [DOI] [PubMed] [Google Scholar]
- Koivunen E., Arap W., Valtanen H., Rainisalo A., Medina O. P., Heikkilä P., Kantor C., Gahmberg C. G., Salo T., Konttinen Y. T. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol. 1999 Aug;17(8):768–774. doi: 10.1038/11703. [DOI] [PubMed] [Google Scholar]
- Konttinen Y. T., Ainola M., Valleala H., Ma J., Ida H., Mandelin J., Kinne R. W., Santavirta S., Sorsa T., López-Otín C. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis. 1999 Nov;58(11):691–697. doi: 10.1136/ard.58.11.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konttinen Y. T., Salo T., Hanemaaijer R., Valleala H., Sorsa T., Sutinen M., Ceponis A., Xu J. W., Santavirta S., Teronen O. Collagenase-3 (MMP-13) and its activators in rheumatoid arthritis: localization in the pannus-hard tissue junction and inhibition by alendronate. Matrix Biol. 1999 Aug;18(4):401–412. doi: 10.1016/s0945-053x(99)00030-x. [DOI] [PubMed] [Google Scholar]
- Lindy O., Konttinen Y. T., Sorsa T., Ding Y., Santavirta S., Ceponis A., López-Otín C. Matrix metalloproteinase 13 (collagenase 3) in human rheumatoid synovium. Arthritis Rheum. 1997 Aug;40(8):1391–1399. doi: 10.1002/art.1780400806. [DOI] [PubMed] [Google Scholar]
- Lotz M., Hashimoto S., Kühn K. Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage. 1999 Jul;7(4):389–391. doi: 10.1053/joca.1998.0220. [DOI] [PubMed] [Google Scholar]
- Okada Y., Naka K., Kawamura K., Matsumoto T., Nakanishi I., Fujimoto N., Sato H., Seiki M. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest. 1995 Mar;72(3):311–322. [PubMed] [Google Scholar]
- Scheven B. A., Milne J. S., Hunter I., Robins S. P. Macrophage-inflammatory protein-1alpha regulates preosteoclast differentiation in vitro. Biochem Biophys Res Commun. 1999 Jan 27;254(3):773–778. doi: 10.1006/bbrc.1998.9909. [DOI] [PubMed] [Google Scholar]
- Scott B. B., Weisbrot L. M., Greenwood J. D., Bogoch E. R., Paige C. J., Keystone E. C. Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis Rheum. 1997 Mar;40(3):490–498. doi: 10.1002/art.1780400315. [DOI] [PubMed] [Google Scholar]
- Shigeyama Y., Pap T., Kunzler P., Simmen B. R., Gay R. E., Gay S. Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum. 2000 Nov;43(11):2523–2530. doi: 10.1002/1529-0131(200011)43:11<2523::AID-ANR20>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Steinberg J., Tsukamoto S., Sledge C. B. A tissue culture model of cartilage breakdown in rheumatoid arthritis. III. Effects of antirheumatic drugs. Arthritis Rheum. 1979 Aug;22(8):877–885. doi: 10.1002/art.1780220811. [DOI] [PubMed] [Google Scholar]
- Suda T., Kobayashi K., Jimi E., Udagawa N., Takahashi N. The molecular basis of osteoclast differentiation and activation. Novartis Found Symp. 2001;232:235–250. doi: 10.1002/0470846658.ch16. [DOI] [PubMed] [Google Scholar]
- Tak P. P., Bresnihan B. The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum. 2000 Dec;43(12):2619–2633. doi: 10.1002/1529-0131(200012)43:12<2619::AID-ANR1>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
- Takayanagi H., Iizuka H., Juji T., Nakagawa T., Yamamoto A., Miyazaki T., Koshihara Y., Oda H., Nakamura K., Tanaka S. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000 Feb;43(2):259–269. doi: 10.1002/1529-0131(200002)43:2<259::AID-ANR4>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Takeuchi E., Tomita T., Toyosaki-Maeda T., Kaneko M., Takano H., Hashimoto H., Sugamoto K., Suzuki R., Ochi T. Establishment and characterization of nurse cell-like stromal cell lines from synovial tissues of patients with rheumatoid arthritis. Arthritis Rheum. 1999 Feb;42(2):221–228. doi: 10.1002/1529-0131(199902)42:2<221::AID-ANR3>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Tetlow L. C., Adlam D. J., Woolley D. E. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001 Mar;44(3):585–594. doi: 10.1002/1529-0131(200103)44:3<585::AID-ANR107>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Toritsuka Y., Nakamura N., Lee S. B., Hashimoto J., Yasui N., Shino K., Ochi T. Osteoclastogenesis in iliac bone marrow of patients with rheumatoid arthritis. J Rheumatol. 1997 Sep;24(9):1690–1696. [PubMed] [Google Scholar]
- Toyosaki-Maeda T., Takano H., Tomita T., Tsuruta Y., Maeda-Tanimura M., Shimaoka Y., Takahashi T., Itoh T., Suzuki R., Ochi T. Differentiation of monocytes into multinucleated giant bone-resorbing cells: two-step differentiation induced by nurse-like cells and cytokines. Arthritis Res. 2001 Aug 2;3(5):306–310. doi: 10.1186/ar320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vu T. H., Shipley J. M., Bergers G., Berger J. E., Helms J. A., Hanahan D., Shapiro S. D., Senior R. M., Werb Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998 May 1;93(3):411–422. doi: 10.1016/s0092-8674(00)81169-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshihara Y., Nakamura H., Obata K., Yamada H., Hayakawa T., Fujikawa K., Okada Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis. 2000 Jun;59(6):455–461. doi: 10.1136/ard.59.6.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., McCluskey K., Fujii K., Wahl L. M. Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and -independent mechanisms. J Immunol. 1998 Sep 15;161(6):3071–3076. [PubMed] [Google Scholar]