Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3180–3185. doi: 10.1128/iai.65.8.3180-3185.1997

Glycosphingolipid-binding protein of Borrelia burgdorferi sensu lato.

K Kaneda 1, T Masuzawa 1, K Yasugami 1, T Suzuki 1, Y Suzuki 1, Y Yanagihara 1
PMCID: PMC175449  PMID: 9234772

Abstract

The binding of Borrelia burgdorferi, the causative agent of Lyme disease, to glycosphingolipids present in various types of cells was examined. B. burgdorferi bound specifically to galactosylceramide (GalCer) and glucosylceramide (GlcCer) but not to other glycosphingolipids, as determined by a thin-layer chromatography (TLC) overlay assay. The binding specificity of B. burgdorferi to various glycosphingolipids suggested that the binding receptor in this species is ceramide monohexoside. The levels of binding of B. burgdorferi virulent strain 297 to GlcCer, sulfatide, lactosylceramide, and galactosylgloboside were 56.2, 1.6, 15.9, and 9.7%, respectively, relative to that to GalCer. Virulent low-passage strains of B. burgdorferi were serially subcultured in BSK II medium, and the resultant high-passage strains were not capable of infecting mice and did not induce footpad swelling. The levels of binding of the low-passage strains to GalCer on TLC plates and to CHO-K1 cells in vitro were threefold higher than those of high-passage strains. Binding was not affected by pretreatment of Borrelia with monospecific anti-outer surface protein C (OspC) antiserum. These results indicated that the binding of Borrelia to glycosphingolipid expressed on the cell surface plays an essential role in infection of mammalian hosts. However, OspC was not associated with binding. The necessity of the sugar and N-acyl moieties in GalCer for the binding of Borrelia was shown by a TLC overlay assay using chemically modified GalCer. Furthermore, three proteins, 67-kDa protein, 62-kDa Hsp60, and 41-kDa flagellin, were involved in binding of B. burgdorferi to GalCer, as shown by blotting assay using biotinylated GalCer as a probe.

Full Text

The Full Text of this article is available as a PDF (858.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assous M. V., Postic D., Paul G., Névot P., Baranton G. Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur J Clin Microbiol Infect Dis. 1993 Apr;12(4):261–268. doi: 10.1007/BF01967256. [DOI] [PubMed] [Google Scholar]
  2. Backenson P. B., Coleman J. L., Benach J. L. Borrelia burgdorferi shows specificity of binding to glycosphingolipids. Infect Immun. 1995 Aug;63(8):2811–2817. doi: 10.1128/iai.63.8.2811-2817.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbour A. G., Hayes S. F., Heiland R. A., Schrumpf M. E., Tessier S. L. A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun. 1986 May;52(2):549–554. doi: 10.1128/iai.52.2.549-554.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbour A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med. 1984 Jul-Aug;57(4):521–525. [PMC free article] [PubMed] [Google Scholar]
  5. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. Lyme disease-a tick-borne spirochetosis? Science. 1982 Jun 18;216(4552):1317–1319. doi: 10.1126/science.7043737. [DOI] [PubMed] [Google Scholar]
  6. Carroll J. A., Dorward D. W., Gherardini F. C. Identification of a transferrin-binding protein from Borrelia burgdorferi. Infect Immun. 1996 Aug;64(8):2911–2916. doi: 10.1128/iai.64.8.2911-2916.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coburn J., Barthold S. W., Leong J. M. Diverse Lyme disease spirochetes bind integrin alpha IIb beta 3 on human platelets. Infect Immun. 1994 Dec;62(12):5559–5567. doi: 10.1128/iai.62.12.5559-5567.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coleman J. L., Sellati T. J., Testa J. E., Kew R. R., Furie M. B., Benach J. L. Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect Immun. 1995 Jul;63(7):2478–2484. doi: 10.1128/iai.63.7.2478-2484.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Comstock L. E., Fikrig E., Shoberg R. J., Flavell R. A., Thomas D. D. A monoclonal antibody to OspA inhibits association of Borrelia burgdorferi with human endothelial cells. Infect Immun. 1993 Feb;61(2):423–431. doi: 10.1128/iai.61.2.423-431.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ewing C., Scorpio A., Nelson D. R., Mather T. N. Isolation of Borrelia burgdorferi from saliva of the tick vector, Ixodes scapularis. J Clin Microbiol. 1994 Mar;32(3):755–758. doi: 10.1128/jcm.32.3.755-758.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fingerle V., Hauser U., Liegl G., Petko B., Preac-Mursic V., Wilske B. Expression of outer surface proteins A and C of Borrelia burgdorferi in Ixodes ricinus. J Clin Microbiol. 1995 Jul;33(7):1867–1869. doi: 10.1128/jcm.33.7.1867-1869.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuchs H., Wallich R., Simon M. M., Kramer M. D. The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12594–12598. doi: 10.1073/pnas.91.26.12594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garcia Monco J. C., Fernandez Villar B., Rogers R. C., Szczepanski A., Wheeler C. M., Benach J. L. Borrelia burgdorferi and other related spirochetes bind to galactocerebroside. Neurology. 1992 Jul;42(7):1341–1348. doi: 10.1212/wnl.42.7.1341. [DOI] [PubMed] [Google Scholar]
  14. Garcia-Monco J. C., Fernandez-Villar B., Benach J. L. Adherence of the Lyme disease spirochete to glial cells and cells of glial origin. J Infect Dis. 1989 Sep;160(3):497–506. doi: 10.1093/infdis/160.3.497. [DOI] [PubMed] [Google Scholar]
  15. Garcia-Monco J. C., Villar B. F., Alen J. C., Benach J. L. Borrelia burgdorferi in the central nervous system: experimental and clinical evidence for early invasion. J Infect Dis. 1990 Jun;161(6):1187–1193. doi: 10.1093/infdis/161.6.1187. [DOI] [PubMed] [Google Scholar]
  16. Guo B. P., Norris S. J., Rosenberg L. C., Hök M. Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun. 1995 Sep;63(9):3467–3472. doi: 10.1128/iai.63.9.3467-3472.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hu L. T., Perides G., Noring R., Klempner M. S. Binding of human plasminogen to Borrelia burgdorferi. Infect Immun. 1995 Sep;63(9):3491–3496. doi: 10.1128/iai.63.9.3491-3496.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Isaacs R. D. Borrelia burgdorferi bind to epithelial cell proteoglycans. J Clin Invest. 1994 Feb;93(2):809–819. doi: 10.1172/JCI117035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jimenez-Lucho V., Ginsburg V., Krivan H. C. Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), a possible adhesion receptor for yeasts. Infect Immun. 1990 Jul;58(7):2085–2090. doi: 10.1128/iai.58.7.2085-2090.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karlsson K. A. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem. 1989;58:309–350. doi: 10.1146/annurev.bi.58.070189.001521. [DOI] [PubMed] [Google Scholar]
  21. Kopp P. A., Schmitt M., Wellensiek H. J., Blobel H. Isolation and characterization of fibronectin-binding sites of Borrelia garinii N34. Infect Immun. 1995 Oct;63(10):3804–3808. doi: 10.1128/iai.63.10.3804-3808.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Leong J. M., Morrissey P. E., Ortega-Barria E., Pereira M. E., Coburn J. Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1995 Mar;63(3):874–883. doi: 10.1128/iai.63.3.874-883.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Luft B. J., Gorevic P. D., Jiang W., Munoz P., Dattwyler R. J. Immunologic and structural characterization of the dominant 66- to 73-kDa antigens of Borrelia burgdorferi. J Immunol. 1991 Apr 15;146(8):2776–2782. [PubMed] [Google Scholar]
  25. Masuzawa T., Kawabata H., Beppu Y., Miyamoto K., Nakao M., Sato N., Muramatsu K., Sato N., Johnson R. C., Yanagihara Y. Characterization of monoclonal antibodies for identification of Borrelia japonica, isolates from Ixodes ovatus. Microbiol Immunol. 1994;38(5):393–398. doi: 10.1111/j.1348-0421.1994.tb01797.x. [DOI] [PubMed] [Google Scholar]
  26. Masuzawa T., Kurita T., Kawabata H., Yanagihara Y. Relationship between infectivity and OspC expression in Lyme disease Borrelia. FEMS Microbiol Lett. 1994 Nov 1;123(3):319–324. doi: 10.1111/j.1574-6968.1994.tb07242.x. [DOI] [PubMed] [Google Scholar]
  27. Masuzawa T., Okada Y., Yanagihara Y. Protective activity of antisera against isolates of Borrelia burgdorferi from various geographical origins. Microbiol Immunol. 1993;37(1):79–83. doi: 10.1111/j.1348-0421.1993.tb03183.x. [DOI] [PubMed] [Google Scholar]
  28. Mensi N., Webb D. R., Turck C. W., Peltz G. A. Characterization of Borrelia burgdorferi proteins reactive with antibodies in synovial fluid of a patient with Lyme arthritis. Infect Immun. 1990 Jul;58(7):2404–2407. doi: 10.1128/iai.58.7.2404-2407.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Neuenhofer S., Schwarzmann G., Egge H., Sandhoff K. Synthesis of lysogangliosides. Biochemistry. 1985 Jan 15;24(2):525–532. doi: 10.1021/bi00323a042. [DOI] [PubMed] [Google Scholar]
  30. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  31. Sadziene A., Barbour A. G., Rosa P. A., Thomas D. D. An OspB mutant of Borrelia burgdorferi has reduced invasiveness in vitro and reduced infectivity in vivo. Infect Immun. 1993 Sep;61(9):3590–3596. doi: 10.1128/iai.61.9.3590-3596.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2909–2913. doi: 10.1073/pnas.92.7.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shanafelt M. C., Hindersson P., Soderberg C., Mensi N., Turck C. W., Webb D., Yssel H., Peltz G. T cell and antibody reactivity with the Borrelia burgdorferi 60-kDa heat shock protein in Lyme arthritis. J Immunol. 1991 Jun 1;146(11):3985–3992. [PubMed] [Google Scholar]
  34. Skare J. T., Shang E. S., Foley D. M., Blanco D. R., Champion C. I., Mirzabekov T., Sokolov Y., Kagan B. L., Miller J. N., Lovett M. A. Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest. 1995 Nov;96(5):2380–2392. doi: 10.1172/JCI118295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Steere A. C. Lyme disease. N Engl J Med. 1989 Aug 31;321(9):586–596. doi: 10.1056/NEJM198908313210906. [DOI] [PubMed] [Google Scholar]
  36. Suzuki Y., Nakao T., Ito T., Watanabe N., Toda Y., Xu G., Suzuki T., Kobayashi T., Kimura Y., Yamada A. Structural determination of gangliosides that bind to influenza A, B, and C viruses by an improved binding assay: strain-specific receptor epitopes in sialo-sugar chains. Virology. 1992 Jul;189(1):121–131. doi: 10.1016/0042-6822(92)90687-k. [DOI] [PubMed] [Google Scholar]
  37. Ullberg M., Kronvall G., Karlsson I., Wiman B. Receptors for human plasminogen on gram-negative bacteria. Infect Immun. 1990 Jan;58(1):21–25. doi: 10.1128/iai.58.1.21-25.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wilske B., Preac-Mursic V., Schierz G., Kühbeck R., Barbour A. G., Kramer M. Antigenic variability of Borrelia burgdorferi. Ann N Y Acad Sci. 1988;539:126–143. doi: 10.1111/j.1749-6632.1988.tb31846.x. [DOI] [PubMed] [Google Scholar]
  39. van Dam A. P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C., Kramer M. D., Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis. 1993 Oct;17(4):708–717. doi: 10.1093/clinids/17.4.708. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES