Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2003 May;62(5):440–443. doi: 10.1136/ard.62.5.440

Active leflunomide metabolite inhibits interleukin 1ß, tumour necrosis factor α, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures

O Elkayam 1, I Yaron 1, I Shirazi 1, R Judovitch 1, D Caspi 1, M Yaron 1
PMCID: PMC1754531  PMID: 12695157

Abstract

Background: Leflunomide is now an approved agent for the management of adult rheumatoid arthritis (RA). Its active metabolite A771726 inhibits de novo pyrimidine biosynthesis. Although considered to be an immunosuppressive agent, its mechanism of action remains obscure.

Objectives: Evaluation of the leflunomide active metabolite A771726 (LEF) effect on interleukin 1ß (IL1ß), tumour necrosis factor (TNFα), nitric oxide (NO), and stromelysin (metalloproteinase-3 (MMP-3)) production by activated human synovial tissue in culture.

Methods: Synovial tissue was obtained during surgery from patients undergoing total knee replacement owing to RA or osteoarthritis (OA), cut into small pieces, and cultured in Petri dishes with test materials as previously described. IL1ß, TNFα, NO, and MMP-3 were measured in the culture media after 48 hours incubation with different doses of LEF by methods previously described.

Results: LEF (0.3, 3, and 9 µg/ml) inhibited IL1ß production in the presence of lipopolysaccharide (LPS; 3 µg/ml) in a dose dependent manner (p<0.01) at LEF 0.3 µg/ml. TNFα production in the presence of IL1ß (1 ng/ml) was also inhibited in a dose dependent manner (p<0.05 at LEF 0.3 µg/ml). NO and MMP-3 production in the presence of LPS (3 µg/ml) was inhibited as well (p<0.01 at LEF 1 µg/ml and at LEF 0.3 µg/ml, respectively). Synovial cell viability evaluated by the tetrazolium salt XTT was unaffected by the LEF concentration used. There was no qualitative difference in the response of OA and RA synovial tissue.

Conclusion: Leflunomide may modulate the rheumatoid articular process by inhibition of local production of IL1ß, TNFα, NO, and MMP-3.

Full Text

The Full Text of this article is available as a PDF (171.0 KB).

Figure 1.

Figure 1

Effect of the leflunomide active metabolite (LEF) on IL1ß levels in the medium of synovial tissue cultures in the presence of LPS (3 µg/ml). Bars show the mean (SEM) of four separate experiments (two RA and two OA, n=8). The absolute mean (SEM) levels of IL1ß in control and LPS stimulated cultures were 1.38 (0.012) and 5.16 (0.08) pg/mg synovia, respectively.

Figure 2.

Figure 2

Effect of leflunomide active metabolite (LEF) on TNFα levels in levels in the medium of synovial tissue cultures in the presence of IL1ß (1 ng/ml). Bars show the mean (SEM) of four separate experiments (two RA and two OA, n=8). The absolute mean (SEM) levels of TNFα in control and IL1ß stimulated cultures were 2.33 (0.23) and 4.95 (0.49) pg/mg synovia, respectively.

Figure 3.

Figure 3

Effect of leflunomide active metabolite (LEF) on nitric oxide (NO) levels in the medium of synovial tissue cultures in the presence of LPS (3 µg/ml). Bars show the mean (SEM) of four separate experiments (two RA, n=4). The absolute mean (SEM) levels of NO in control and LPS stimulated cultures were 1.08 (0.01) and 2.45 (0.245) µmol/mg synovia, respectively.

Figure 4.

Figure 4

Effect of LEF on stromelysin (MMP-3) levels in the medium of synovial tissue cultures in the presence of LPS (3 µg/ml). Bars show the mean of four separate experiments (two RA, n=4). The absolute mean (SEM) levels of MMP-3 in controls and LPS stimulated cultures were 1929 (83) and 5394 (197) ng/mg synovia, respectively.

Figure 5.

Figure 5

Effect of LEF on cell viability. Bars represent the percentage of viable cells incubated with LEF in comparison with control. LEF at a concentration of 0.3–9 µg/ml did not show any deleterious effect on cell viability, which remained >90% in comparison with controls.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn D. K., Kim Y. S., Park J. S. Central NO is involved in the antinociceptive action of intracisternal antidepressants in freely moving rats. Neurosci Lett. 1998 Feb 27;243(1-3):105–108. doi: 10.1016/s0304-3940(98)00099-8. [DOI] [PubMed] [Google Scholar]
  2. Amin A. R., Attur M., Abramson S. B. Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr Opin Rheumatol. 1999 May;11(3):202–209. doi: 10.1097/00002281-199905000-00009. [DOI] [PubMed] [Google Scholar]
  3. Anbar M., Gratt B. M. Role of nitric oxide in the physiopathology of pain. J Pain Symptom Manage. 1997 Oct;14(4):225–254. doi: 10.1016/s0885-3924(97)00178-4. [DOI] [PubMed] [Google Scholar]
  4. Arend W. P., Dayer J. M. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum. 1995 Feb;38(2):151–160. doi: 10.1002/art.1780380202. [DOI] [PubMed] [Google Scholar]
  5. Ashab I., Peer G., Blum M., Wollman Y., Chernihovsky T., Hassner A., Schwartz D., Cabili S., Silverberg D., Iaina A. Oral administration of L-arginine and captopril in rats prevents chronic renal failure by nitric oxide production. Kidney Int. 1995 Jun;47(6):1515–1521. doi: 10.1038/ki.1995.214. [DOI] [PubMed] [Google Scholar]
  6. Bartlett R. R., Anagnostopulos H., Zielinski T., Mattar T., Schleyerbach R. Effects of leflunomide on immune responses and models of inflammation. Springer Semin Immunopathol. 1993;14(4):381–394. doi: 10.1007/BF00192310. [DOI] [PubMed] [Google Scholar]
  7. Breedveld F. C. New insights in the pathogenesis of rheumatoid arthritis. J Rheumatol Suppl. 1998 Jul;53:3–7. [PubMed] [Google Scholar]
  8. Castor C. W., Bignall M. C., Hossler P. A., Roberts D. J. Connective tissue activation. XXI. Regulation of glycosaminoglycan metabolism by lymphocyte (CTAP-I) and platelet (CTAP-III) growth factors. In Vitro. 1981 Sep;17(9):777–785. doi: 10.1007/BF02618444. [DOI] [PubMed] [Google Scholar]
  9. Clancy R. M., Amin A. R., Abramson S. B. The role of nitric oxide in inflammation and immunity. Arthritis Rheum. 1998 Jul;41(7):1141–1151. doi: 10.1002/1529-0131(199807)41:7<1141::AID-ART2>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  10. Cunnane G., Fitzgerald O., Beeton C., Cawston T. E., Bresnihan B. Early joint erosions and serum levels of matrix metalloproteinase 1, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 in rheumatoid arthritis. Arthritis Rheum. 2001 Oct;44(10):2263–2274. doi: 10.1002/1529-0131(200110)44:10<2263::aid-art389>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  11. D'Agostino P., Ferlazzo V., Milano S., La Rosa M., Di Bella G., Caruso R., Barbera C., Grimaudo S., Tolomeo M., Feo S. Anti-inflammatory effects of chemically modified tetracyclines by the inhibition of nitric oxide and interleukin-12 synthesis in J774 cell line. Int Immunopharmacol. 2001 Sep;1(9-10):1765–1776. doi: 10.1016/s1567-5769(01)00100-x. [DOI] [PubMed] [Google Scholar]
  12. Davis J. P., Cain G. A., Pitts W. J., Magolda R. L., Copeland R. A. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry. 1996 Jan 30;35(4):1270–1273. doi: 10.1021/bi952168g. [DOI] [PubMed] [Google Scholar]
  13. Dimitrijevic M., Bartlett R. R. Leflunomide, a novel immunomodulating drug, inhibits homotypic adhesion of peripheral blood and synovial fluid mononuclear cells in rheumatoid arthritis. Inflamm Res. 1996 Nov;45(11):550–556. doi: 10.1007/BF02342226. [DOI] [PubMed] [Google Scholar]
  14. Hirai Y., Migita K., Honda S., Ueki Y., Yamasaki S., Urayama S., Kamachi M., Kawakami A., Ida H., Kita M. Effects of nitric oxide on matrix metalloproteinase-2 production by rheumatoid synovial cells. Life Sci. 2001 Jan 12;68(8):913–920. doi: 10.1016/s0024-3205(00)00998-x. [DOI] [PubMed] [Google Scholar]
  15. Jankovic V., Samardzic T., Stosic-Grujicic S., Popadic D., Trajkovic V. Cell-specific inhibition of inducible nitric oxide synthase activation by leflunomide. Cell Immunol. 2000 Feb 1;199(2):73–80. doi: 10.1006/cimm.1999.1600. [DOI] [PubMed] [Google Scholar]
  16. Knecht W., Bergjohann U., Gonski S., Kirschbaum B., Löffler M. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur J Biochem. 1996 Aug 15;240(1):292–301. doi: 10.1111/j.1432-1033.1996.0292h.x. [DOI] [PubMed] [Google Scholar]
  17. Kraan M. C., Reece R. J., Barg E. C., Smeets T. J., Farnell J., Rosenburg R., Veale D. J., Breedveld F. C., Emery P., Tak P. P. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 2000 Aug;43(8):1820–1830. doi: 10.1002/1529-0131(200008)43:8<1820::AID-ANR18>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  18. Martel-Pelletier J., Welsch D. J., Pelletier J. P. Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol. 2001 Dec;15(5):805–829. doi: 10.1053/berh.2001.0195. [DOI] [PubMed] [Google Scholar]
  19. Mattar T., Kochhar K., Bartlett R., Bremer E. G., Finnegan A. Inhibition of the epidermal growth factor receptor tyrosine kinase activity by leflunomide. FEBS Lett. 1993 Nov 15;334(2):161–164. doi: 10.1016/0014-5793(93)81704-4. [DOI] [PubMed] [Google Scholar]
  20. Miljkovic D., Samardzic T., Mostarica Stojkovic M., Stosic-Grujicic S., Popadic D., Trajkovic V. Leflunomide inhibits activation of inducible nitric oxide synthase in rat astrocytes. Brain Res. 2001 Jan 19;889(1-2):331–338. doi: 10.1016/s0006-8993(00)03181-4. [DOI] [PubMed] [Google Scholar]
  21. Mladenovic V., Domljan Z., Rozman B., Jajic I., Mihajlovic D., Dordevic J., Popovic M., Dimitrijevic M., Zivkovic M., Campion G. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Results of a randomized, placebo-controlled, phase II study. Arthritis Rheum. 1995 Nov;38(11):1595–1603. doi: 10.1002/art.1780381111. [DOI] [PubMed] [Google Scholar]
  22. Prakash A., Jarvis B. Leflunomide: a review of its use in active rheumatoid arthritis. Drugs. 1999 Dec;58(6):1137–1164. doi: 10.2165/00003495-199958060-00010. [DOI] [PubMed] [Google Scholar]
  23. Ribbens C., Martin y Porras M., Franchimont N., Kaiser M-J, Jaspar J-M, Damas P., Houssiau F. A., Malaise M. G. Increased matrix metalloproteinase-3 serum levels in rheumatic diseases: relationship with synovitis and steroid treatment. Ann Rheum Dis. 2002 Feb;61(2):161–166. doi: 10.1136/ard.61.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roehm N. W., Rodgers G. H., Hatfield S. M., Glasebrook A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 1991 Sep 13;142(2):257–265. doi: 10.1016/0022-1759(91)90114-u. [DOI] [PubMed] [Google Scholar]
  25. Shiozawa S., Tokuhisa T. Contribution of synovial mesenchymal cells to the pathogenesis of rheumatoid arthritis. Semin Arthritis Rheum. 1992 Feb;21(4):267–273. doi: 10.1016/0049-0172(92)90058-l. [DOI] [PubMed] [Google Scholar]
  26. Silva Júnior H. T., Morris R. E. Leflunomide and malononitrilamides. Am J Med Sci. 1997 May;313(5):289–301. doi: 10.1097/00000441-199705000-00008. [DOI] [PubMed] [Google Scholar]
  27. Smeets T. J., Kraan M. C., Galjaard S., Youssef P. P., Smith M. D., Tak P. P. Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage-pannus junction in patients with RA. Ann Rheum Dis. 2001 Jun;60(6):561–565. doi: 10.1136/ard.60.6.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strand V., Cohen S., Schiff M., Weaver A., Fleischmann R., Cannon G., Fox R., Moreland L., Olsen N., Furst D. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med. 1999 Nov 22;159(21):2542–2550. doi: 10.1001/archinte.159.21.2542. [DOI] [PubMed] [Google Scholar]
  29. Trajkovic V. Modulation of inducible nitric oxide synthase activation by immunosuppressive drugs. Curr Drug Metab. 2001 Sep;2(3):315–329. doi: 10.2174/1389200013338405. [DOI] [PubMed] [Google Scholar]
  30. Xu X., Williams J. W., Gong H., Finnegan A., Chong A. S. Two activities of the immunosuppressive metabolite of leflunomide, A77 1726. Inhibition of pyrimidine nucleotide synthesis and protein tyrosine phosphorylation. Biochem Pharmacol. 1996 Aug 23;52(4):527–534. doi: 10.1016/0006-2952(96)00303-6. [DOI] [PubMed] [Google Scholar]
  31. Yang Y. H., Hutchinson P., Santos L. L., Morand E. F. Glucocorticoid inhibition of adjuvant arthritis synovial macrophage nitric oxide production: role of lipocortin 1. Clin Exp Immunol. 1998 Jan;111(1):117–122. doi: 10.1046/j.1365-2249.1998.00438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yaron I., Shirazi I., Judovich R., Levartovsky D., Caspi D., Yaron M. Fluoxetine and amitriptyline inhibit nitric oxide, prostaglandin E2, and hyaluronic acid production in human synovial cells and synovial tissue cultures. Arthritis Rheum. 1999 Dec;42(12):2561–2568. doi: 10.1002/1529-0131(199912)42:12<2561::AID-ANR8>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  33. Yoon Y. W., Sung B., Chung J. M. Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model. Neuroreport. 1998 Feb 16;9(3):367–372. doi: 10.1097/00001756-199802160-00002. [DOI] [PubMed] [Google Scholar]
  34. van't Hof R. J., Hocking L., Wright P. K., Ralston S. H. Nitric oxide is a mediator of apoptosis in the rheumatoid joint. Rheumatology (Oxford) 2000 Sep;39(9):1004–1008. doi: 10.1093/rheumatology/39.9.1004. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES