Abstract
Binding of Escherichia coli heat-stable enterotoxin B (STb) to the human intestinal epithelial cell lines T84 and HT29 and to polarized T84 cells was studied to define the initial interaction of this peptide toxin with target cells. Equilibrium and competitive binding isotherms showed that 125I-STb bound specifically to T84 and HT29 cells; however, the toxin-epithelial cell interactions could be characterized by low-affinity binding (< or = 10(5) M(-1)) to a high number of binding sites (> or = 10(6) per cell). STb binding to T84 and HT29 cells as a function of 125I-STb concentration did not approach saturation at levels well above the effective biological concentration of STb for fluid secretion. Treatment of the 125I-STb-bound T84 and HT29 cells with an acidic saline solution to remove surface-bound toxin revealed that only approximately 55% +/- 10% of 125I-STb could be removed by this treatment at 4 degrees C, suggesting that approximately half of the bound STb was stably associated with the plasma membrane and/or internalized into the cytoplasm. Similar results were obtained when binding and internalization experiments were conducted at 22 and 37 degrees C. Immunofluorescence studies demonstrated that the strongest signal for STb appeared in the plasma membrane even after acid treatment. Toxin-treated cells also displayed diffuse cytoplasmic staining, indicating that once cell bound, STb did not appear to preferentially associate with membrane vesicles or cellular organelles. Binding and subsequent internalization of 125I-STb were not affected by treatment of the cells with trypsin, endoglycosidase F/peptide N-glycosidase F, Vibrio cholerae neuraminidase, tunicamycin, or 5 mM sodium chlorate, which blocks sulfation of surface proteoglycans. In addition, the internalization process was not altered by preincubation of the cells with the cytoskeleton inhibitors cytochalasin D and colchicine or cellular perturbants (i.e., 0.45 M sucrose and 5 mM sodium azide), indicating that cell surface proteins or carbohydrates did not function as STb receptors. The binding of 125I-STb to polarized T84 cells was also examined, and the total and nonspecific binding isotherms were found to overlap, indicating that the apical surface of polarized T84 cells did not contain a specific receptor for STb. In comparison to undifferentiated cells, twice the amount of bound STb (approximately 80% +/- 10%) was removable from polarized T84 cells after treatment with acidic solution. The percentage of surface-bound STb to polarized T84 cells did not vary significantly with the transepithelial electrical resistance of the cells or when STb was applied basolaterally. Together, our results indicate that STb binds with relatively low affinity to the plasma membrane of cultured intestinal epithelial cells and polarized T84 cells, probably to membrane lipids, and becomes stably associated with the lipid bilayer. The fact that a significant portion of the bound STb becomes free in the cytoplasm, even at a low temperature, suggests that the bound toxin may directly traverse the membrane bilayer.
Full Text
The Full Text of this article is available as a PDF (345.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aridor M., Rajmilevich G., Beaven M. A., Sagi-Eisenberg R. Activation of exocytosis by the heterotrimeric G protein Gi3. Science. 1993 Dec 3;262(5139):1569–1572. doi: 10.1126/science.7504324. [DOI] [PubMed] [Google Scholar]
- Arriaga Y. L., Harville B. A., Dreyfus L. A. Contribution of individual disulfide bonds to biological action of Escherichia coli heat-stable enterotoxin B. Infect Immun. 1995 Dec;63(12):4715–4720. doi: 10.1128/iai.63.12.4715-4720.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baeuerle P. A., Huttner W. B. Chlorate--a potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun. 1986 Dec 15;141(2):870–877. doi: 10.1016/s0006-291x(86)80253-4. [DOI] [PubMed] [Google Scholar]
- Bame K. J., Reddy R. V., Esko J. D. Coupling of N-deacetylation and N-sulfation in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J Biol Chem. 1991 Jul 5;266(19):12461–12468. [PubMed] [Google Scholar]
- Dreyfus L. A., Harville B., Howard D. E., Shaban R., Beatty D. M., Morris S. J. Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STB). Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3202–3206. doi: 10.1073/pnas.90.8.3202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfus L. A., Urban R. G., Whipp S. C., Slaughter C., Tachias K., Kupersztoch Y. M., Drefus L. A. Purification of the STB enterotoxin of Escherichia coli and the role of selected amino acids on its secretion, stability and toxicity. Mol Microbiol. 1992 Aug;6(16):2397–2406. doi: 10.1111/j.1365-2958.1992.tb01414.x. [DOI] [PubMed] [Google Scholar]
- Dubreuil J. D., Fairbrother J. M., Lallier R., Larivière S. Production and purification of heat-stable enterotoxin b from a porcine Escherichia coli strain. Infect Immun. 1991 Jan;59(1):198–203. doi: 10.1128/iai.59.1.198-203.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans J., Wang Y. D., Shaw K. P., Vernon L. P. Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5849–5853. doi: 10.1073/pnas.86.15.5849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evett G. E., Donaldson D. M., Vernon L. P. Biological properties of Pyrularia thionin prepared from nuts of Pyrularia pubera. Toxicon. 1986;24(6):622–625. doi: 10.1016/0041-0101(86)90185-6. [DOI] [PubMed] [Google Scholar]
- Fischer T., Thoma B., Scheurich P., Pfizenmaier K. Glycosylation of the human interferon-gamma receptor. N-linked carbohydrates contribute to structural heterogeneity and are required for ligand binding. J Biol Chem. 1990 Jan 25;265(3):1710–1717. [PubMed] [Google Scholar]
- Florack D. E., Stiekema W. J. Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol. 1994 Oct;26(1):25–37. doi: 10.1007/BF00039517. [DOI] [PubMed] [Google Scholar]
- Frantz J. C., Jaso-Friedman L., Robertson D. C. Binding of Escherichia coli heat-stable enterotoxin to rat intestinal cells and brush border membranes. Infect Immun. 1984 Feb;43(2):622–630. doi: 10.1128/iai.43.2.622-630.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujii Y., Kondo Y., Okamoto K. Involvement of prostaglandin E2 synthesis in the intestinal secretory action of Escherichia coli heat-stable enterotoxin II. FEMS Microbiol Lett. 1995 Aug 1;130(2-3):259–265. doi: 10.1111/j.1574-6968.1995.tb07729.x. [DOI] [PubMed] [Google Scholar]
- Fujii Y., Okamuro Y., Hitotsubashi S., Saito A., Akashi N., Okamoto K. Effect of alterations of basic amino acid residues of Escherichia coli heat-stable enterotoxin II on enterotoxicity. Infect Immun. 1994 Jun;62(6):2295–2301. doi: 10.1128/iai.62.6.2295-2301.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gariépy J., Judd A. K., Schoolnik G. K. Importance of disulfide bridges in the structure and activity of Escherichia coli enterotoxin ST1b. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8907–8911. doi: 10.1073/pnas.84.24.8907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gariépy J., Schoolnik G. K. Design of a photoreactive analogue of the Escherichia coli heat-stable enterotoxin STIb: use in identifying its receptor on rat brush border membranes. Proc Natl Acad Sci U S A. 1986 Jan;83(2):483–487. doi: 10.1073/pnas.83.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greve H., Cully Z., Blumberg P., Kresse H. Influence of chlorate on proteoglycan biosynthesis by cultured human fibroblasts. J Biol Chem. 1988 Sep 15;263(26):12886–12892. [PubMed] [Google Scholar]
- Haigler H. T., Maxfield F. R., Willingham M. C., Pastan I. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J Biol Chem. 1980 Feb 25;255(4):1239–1241. [PubMed] [Google Scholar]
- Harville B. A., Dreyfus L. A. Involvement of 5-hydroxytryptamine and prostaglandin E2 in the intestinal secretory action of Escherichia coli heat-stable enterotoxin B. Infect Immun. 1995 Mar;63(3):745–750. doi: 10.1128/iai.63.3.745-750.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harville B. A., Dreyfus L. A. Release of serotonin from RBL-2H3 cells by the Escherichia coli peptide toxin STb. Peptides. 1996;17(3):363–366. doi: 10.1016/0196-9781(96)00033-2. [DOI] [PubMed] [Google Scholar]
- Hitotsubashi S., Fujii Y., Okamoto K. Binding protein for Escherichia coli heat-stable enterotoxin II in mouse intestinal membrane. FEMS Microbiol Lett. 1994 Oct 1;122(3):297–302. doi: 10.1111/j.1574-6968.1994.tb07183.x. [DOI] [PubMed] [Google Scholar]
- Hitotsubashi S., Fujii Y., Yamanaka H., Okamoto K. Some properties of purified Escherichia coli heat-stable enterotoxin II. Infect Immun. 1992 Nov;60(11):4468–4474. doi: 10.1128/iai.60.11.4468-4474.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humphries D. E., Silbert J. E. Chlorate: a reversible inhibitor of proteoglycan sulfation. Biochem Biophys Res Commun. 1988 Jul 15;154(1):365–371. doi: 10.1016/0006-291x(88)90694-8. [DOI] [PubMed] [Google Scholar]
- Hök M., Kjellén L., Johansson S. Cell-surface glycosaminoglycans. Annu Rev Biochem. 1984;53:847–869. doi: 10.1146/annurev.bi.53.070184.004215. [DOI] [PubMed] [Google Scholar]
- Judd A. M., Vernon L. P., MacLeod R. M. Pyrularia thionin increases arachidonate liberation and prolactin and growth hormone release from anterior pituitary cells. Toxicon. 1992 Dec;30(12):1563–1573. doi: 10.1016/0041-0101(92)90028-4. [DOI] [PubMed] [Google Scholar]
- Keller K. M., Brauer P. R., Keller J. M. Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate. Biochemistry. 1989 Oct 3;28(20):8100–8107. doi: 10.1021/bi00446a021. [DOI] [PubMed] [Google Scholar]
- Keusch G. T., Jacewicz M., Donohue-Rolfe A. Pathogenesis of shigella diarrhea: evidence for an N-linked glycoprotein shigella toxin receptor and receptor modulation by beta-galactosidase. J Infect Dis. 1986 Feb;153(2):238–248. doi: 10.1093/infdis/153.2.238. [DOI] [PubMed] [Google Scholar]
- Koh G. Y., Nussenzveig D. R., Okolicany J., Price D. A., Maack T. Dynamics of atrial natriuretic factor-guanylate cyclase receptors and receptor-ligand complexes in cultured glomerular mesangial and renomedullary interstitial cells. J Biol Chem. 1992 Jun 15;267(17):11987–11994. [PubMed] [Google Scholar]
- Li M. M., Jourdian G. W. Isolation and characterization of the two glycosylation isoforms of low molecular weight mannose 6-phosphate receptor from bovine testis. Effect of carbohydrate components on ligand binding. J Biol Chem. 1991 Sep 15;266(26):17621–17630. [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Osorio e Castro V. R., Ashwood E. R., Wood S. G., Vernon L. P. Hemolysis of erythrocytes and fluorescence polarization changes elicited by peptide toxins, aliphatic alcohols, related glycols and benzylidene derivatives. Biochim Biophys Acta. 1990 Nov 16;1029(2):252–258. doi: 10.1016/0005-2736(90)90161-g. [DOI] [PubMed] [Google Scholar]
- Osorio e Castro V. R., Van Kuiken B. A., Vernon L. P. Action of a thionin isolated from nuts of Pyrularia pubera on human erythrocytes. Toxicon. 1989;27(5):501–510. doi: 10.1016/0041-0101(89)90111-6. [DOI] [PubMed] [Google Scholar]
- Ozaki H., Sato T., Kubota H., Hata Y., Katsube Y., Shimonishi Y. Molecular structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J Biol Chem. 1991 Mar 25;266(9):5934–5941. [PubMed] [Google Scholar]
- Paccaud J. P., Siddle K., Carpentier J. L. Internalization of the human insulin receptor. The insulin-independent pathway. J Biol Chem. 1992 Jun 25;267(18):13101–13106. [PubMed] [Google Scholar]
- Peterson J. W., Lu Y., Duncan S., Cantu J., Chopra A. K. Interactions of intestinal mediators in the mode of action of cholera toxin. J Med Microbiol. 1994 Jul;41(1):3–9. doi: 10.1099/00222615-41-1-3. [DOI] [PubMed] [Google Scholar]
- Peterson J. W., Ochoa L. G. Role of prostaglandins and cAMP in the secretory effects of cholera toxin. Science. 1989 Aug 25;245(4920):857–859. doi: 10.1126/science.2549637. [DOI] [PubMed] [Google Scholar]
- Peterson J. W., Whipp S. C. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun. 1995 Apr;63(4):1452–1461. doi: 10.1128/iai.63.4.1452-1461.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prywes R., Livneh E., Ullrich A., Schlessinger J. Mutations in the cytoplasmic domain of EGF receptor affect EGF binding and receptor internalization. EMBO J. 1986 Sep;5(9):2179–2190. doi: 10.1002/j.1460-2075.1986.tb04482.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz S., Green C. K., Yuen P. S., Garbers D. L. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell. 1990 Nov 30;63(5):941–948. doi: 10.1016/0092-8674(90)90497-3. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
- Simons K., Wandinger-Ness A. Polarized sorting in epithelia. Cell. 1990 Jul 27;62(2):207–210. doi: 10.1016/0092-8674(90)90357-k. [DOI] [PubMed] [Google Scholar]
- Slice L. W., Wong H. C., Sternini C., Grady E. F., Bunnett N. W., Walsh J. H. The conserved NPXnY motif present in the gastrin-releasing peptide receptor is not a general sequestration sequence. J Biol Chem. 1994 Aug 26;269(34):21755–21761. [PubMed] [Google Scholar]
- Sukumar M., Rizo J., Wall M., Dreyfus L. A., Kupersztoch Y. M., Gierasch L. M. The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism. Protein Sci. 1995 Sep;4(9):1718–1729. doi: 10.1002/pro.5560040907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teeter M. M., Ma X. Q., Rao U., Whitlow M. Crystal structure of a protein-toxin alpha 1-purothionin at 2.5A and a comparison with predicted models. Proteins. 1990;8(2):118–132. doi: 10.1002/prot.340080203. [DOI] [PubMed] [Google Scholar]
- Vernon L. P., Rogers A. Binding properties of Pyrularia thionin and Naja naja kaouthia cardiotoxin to human and animal erythrocytes and to murine P388 cells. Toxicon. 1992 Jul;30(7):711–721. doi: 10.1016/0041-0101(92)90005-p. [DOI] [PubMed] [Google Scholar]
- Vernon L. P., Rogers A. Effect of calcium and phosphate ions on hemolysis induced by Pyrularia thionin and Naja naja kaouthia cardiotoxin. Toxicon. 1992 Jul;30(7):701–709. doi: 10.1016/0041-0101(92)90004-o. [DOI] [PubMed] [Google Scholar]
- Weingarten R., Ransnäs L., Mueller H., Sklar L. A., Bokoch G. M. Mastoparan interacts with the carboxyl terminus of the alpha subunit of Gi. J Biol Chem. 1990 Jul 5;265(19):11044–11049. [PubMed] [Google Scholar]
- Whipp S. C. Assay for enterotoxigenic Escherichia coli heat-stable toxin b in rats and mice. Infect Immun. 1990 Apr;58(4):930–934. doi: 10.1128/iai.58.4.930-934.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]