Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3225–3230. doi: 10.1128/iai.65.8.3225-3230.1997

Successful therapy of chronic, nonhealing murine cutaneous leishmaniasis with sodium stibogluconate and gamma interferon depends on continued interleukin-12 production.

J Li 1, S Sutterwala 1, J P Farrell 1
PMCID: PMC175456  PMID: 9234779

Abstract

Treatment of nonhealing forms of human leishmaniasis with antimonial drugs in combination with gamma interferon (IFN-gamma) may promote healing more effectively than conventional drug therapy. Although the natures of immune responses in patients prior to treatment are often unclear, it is generally assumed that such therapy also promotes a switch from a Th2-type response to a dominant Th1-type response. We have examined the efficacy of IFN-gamma therapy, in combination with drug therapy, to promote healing and a Th2-to-Th1 switch in highly susceptible BALB/c mice infected with Leishmania major. Short-term treatment with the antileishmanial drug sodium stibogluconate failed to significantly alter the course of disease or the immune response when it was given during the third and fourth weeks of infection. IFN-gamma therapy, administered over the same time period, also failed to induce cure or a Th1 dominant response. In contrast, mice treated with a combination of drug and IFN-gamma therapy resolved their infections and developed Th1-type responses. However, administration of an antibody to interleukin 12 (IL-12) reversed the therapeutic effects of therapy with drug plus IFN-gamma, suggesting that IFN-gamma promotes cure through an IL-12-dependent mechanism. Analysis of mRNA levels within parasitized lesions suggests that drug treatment plus IFN-gamma treatment, in addition to reducing parasite numbers, results in reduced levels of IL-4, IL-10, and transforming growth factor beta transcripts but increased levels of transcripts of the p40 chain of IL-12 and inducible nitric oxide synthase, which catalyzes the production of nitric oxide. Together, these results suggest that such immunotherapy may promote the development of a protective Th1-type response in susceptible mice by a mechanism which involves both suppression of regulatory cytokines and enhancement of IL-12 and nitric oxide production.

Full Text

The Full Text of this article is available as a PDF (186.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belosevic M., Finbloom D. S., Van Der Meide P. H., Slayter M. V., Nacy C. A. Administration of monoclonal anti-IFN-gamma antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J Immunol. 1989 Jul 1;143(1):266–274. [PubMed] [Google Scholar]
  2. Bogdan C., Nathan C. Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann N Y Acad Sci. 1993 Jun 23;685:713–739. doi: 10.1111/j.1749-6632.1993.tb35934.x. [DOI] [PubMed] [Google Scholar]
  3. Bogdan C., Vodovotz Y., Paik J., Xie Q. W., Nathan C. Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages. J Leukoc Biol. 1994 Feb;55(2):227–233. doi: 10.1002/jlb.55.2.227. [DOI] [PubMed] [Google Scholar]
  4. Bretscher P. A., Wei G., Menon J. N., Bielefeldt-Ohmann H. Establishment of stable, cell-mediated immunity that makes "susceptible" mice resistant to Leishmania major. Science. 1992 Jul 24;257(5069):539–542. doi: 10.1126/science.1636090. [DOI] [PubMed] [Google Scholar]
  5. Carvalho E. M., Bacellar O., Brownell C., Regis T., Coffman R. L., Reed S. G. Restoration of IFN-gamma production and lymphocyte proliferation in visceral leishmaniasis. J Immunol. 1994 Jun 15;152(12):5949–5956. [PubMed] [Google Scholar]
  6. Carvalho E. M., Badaró R., Reed S. G., Jones T. C., Johnson W. D., Jr Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis. J Clin Invest. 1985 Dec;76(6):2066–2069. doi: 10.1172/JCI112209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carvalho E. M., Teixeira R. S., Johnson W. D., Jr Cell-mediated immunity in American visceral leishmaniasis: reversible immunosuppression during acute infection. Infect Immun. 1981 Aug;33(2):498–500. doi: 10.1128/iai.33.2.498-500.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chatelain R., Varkila K., Coffman R. L. IL-4 induces a Th2 response in Leishmania major-infected mice. J Immunol. 1992 Feb 15;148(4):1182–1187. [PubMed] [Google Scholar]
  9. Convit J., Ulrich M., Fernández C. T., Tapia F. J., Cáceres-Dittmar G., Castés M., Rondón A. J. The clinical and immunological spectrum of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 1993 Jul-Aug;87(4):444–448. doi: 10.1016/0035-9203(93)90030-t. [DOI] [PubMed] [Google Scholar]
  10. Curry R. C., Kiener P. A., Spitalny G. L. A sensitive immunochemical assay for biologically active MuIFN-gamma. J Immunol Methods. 1987 Nov 23;104(1-2):137–142. doi: 10.1016/0022-1759(87)90497-2. [DOI] [PubMed] [Google Scholar]
  11. Gazzinelli R. T., Hieny S., Wynn T. A., Wolf S., Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6115–6119. doi: 10.1073/pnas.90.13.6115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harms G., Zwingenberger K., Sandkamp B., Omena S., Pedrosa C., Richter J., Rosenkaimer F., Feldmeier H., Bienzle U. Immunochemotherapy of visceral leishmaniasis: a pilot trial of sequential treatment with recombinant interferon-gamma and pentavalent antimony. J Interferon Res. 1993 Feb;13(1):39–41. doi: 10.1089/jir.1993.13.39. [DOI] [PubMed] [Google Scholar]
  13. Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L., Locksley R. M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989 Jan 1;169(1):59–72. doi: 10.1084/jem.169.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heinzel F. P., Sadick M. D., Mutha S. S., Locksley R. M. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7011–7015. doi: 10.1073/pnas.88.16.7011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heinzel F. P., Schoenhaut D. S., Rerko R. M., Rosser L. E., Gately M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med. 1993 May 1;177(5):1505–1509. doi: 10.1084/jem.177.5.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kemp M., Hey A. S., Kurtzhals J. A., Christensen C. B., Gaafar A., Mustafa M. D., Kordofani A. A., Ismail A., Kharazmi A., Theander T. G. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis. Clin Exp Immunol. 1994 Jun;96(3):410–415. doi: 10.1111/j.1365-2249.1994.tb06043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li J., Scott P., Farrell J. P. In vivo alterations in cytokine production following interleukin-12 (IL-12) and anti-IL-4 antibody treatment of CB6F1 mice with chronic cutaneous leishmaniasis. Infect Immun. 1996 Dec;64(12):5248–5254. doi: 10.1128/iai.64.12.5248-5254.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ma X., Chow J. M., Gri G., Carra G., Gerosa F., Wolf S. F., Dzialo R., Trinchieri G. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med. 1996 Jan 1;183(1):147–157. doi: 10.1084/jem.183.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murray H. W., Hariprashad J., Aguero B., Arakawa T., Yeganegi H. Antimicrobial response of a T cell-deficient host to cytokine therapy: effect of interferon-gamma in experimental visceral leishmaniasis in nude mice. J Infect Dis. 1995 May;171(5):1309–1316. doi: 10.1093/infdis/171.5.1309. [DOI] [PubMed] [Google Scholar]
  20. Murray H. W., Rubin B. Y., Rothermel C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest. 1983 Oct;72(4):1506–1510. doi: 10.1172/JCI111107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nabors G. S., Afonso L. C., Farrell J. P., Scott P. Switch from a type 2 to a type 1 T helper cell response and cure of established Leishmania major infection in mice is induced by combined therapy with interleukin 12 and Pentostam. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3142–3146. doi: 10.1073/pnas.92.8.3142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nabors G. S., Farrell J. P. Activity of pentostam (sodium stibogluconate) against cutaneous leishmaniasis in mice treated with neutralizing anti-interferon-gamma antibody. Am J Trop Med Hyg. 1995 Jul;53(1):55–60. [PubMed] [Google Scholar]
  23. Nabors G. S., Farrell J. P. Depletion of interleukin-4 in BALB/c mice with established Leishmania major infections increases the efficacy of antimony therapy and promotes Th1-like responses. Infect Immun. 1994 Dec;62(12):5498–5504. doi: 10.1128/iai.62.12.5498-5504.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nabors G. S., Farrell J. P. Successful chemotherapy in experimental leishmaniasis is influenced by the polarity of the T cell response before treatment. J Infect Dis. 1996 Apr;173(4):979–986. doi: 10.1093/infdis/173.4.979. [DOI] [PubMed] [Google Scholar]
  25. Nabors G. S., Nolan T., Croop W., Li J., Farrell J. P. The influence of the site of parasite inoculation on the development of Th1 and Th2 type immune responses in (BALB/c x C57BL/6) F1 mice infected with Leishmania major. Parasite Immunol. 1995 Nov;17(11):569–579. doi: 10.1111/j.1365-3024.1995.tb01000.x. [DOI] [PubMed] [Google Scholar]
  26. Sacks D. L., Hieny S., Sher A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. 1985 Jul;135(1):564–569. [PubMed] [Google Scholar]
  27. Sadick M. D., Heinzel F. P., Holaday B. J., Pu R. T., Dawkins R. S., Locksley R. M. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med. 1990 Jan 1;171(1):115–127. doi: 10.1084/jem.171.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scott P., Natovitz P., Coffman R. L., Pearce E., Sher A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med. 1988 Nov 1;168(5):1675–1684. doi: 10.1084/jem.168.5.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stenger S., Thüring H., Röllinghoff M., Bogdan C. Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major. J Exp Med. 1994 Sep 1;180(3):783–793. doi: 10.1084/jem.180.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sundar S., Murray H. W. Effect of treatment with interferon-gamma alone in visceral leishmaniasis. J Infect Dis. 1995 Dec;172(6):1627–1629. doi: 10.1093/infdis/172.6.1627. [DOI] [PubMed] [Google Scholar]
  31. Sundar S., Rosenkaimer F., Lesser M. L., Murray H. W. Immunochemotherapy for a systemic intracellular infection: accelerated response using interferon-gamma in visceral leishmaniasis. J Infect Dis. 1995 Apr;171(4):992–996. doi: 10.1093/infdis/171.4.992. [DOI] [PubMed] [Google Scholar]
  32. Sundar S., Rosenkaimer F., Murray H. W. Successful treatment of refractory visceral leishmaniasis in India using antimony plus interferon-gamma. J Infect Dis. 1994 Sep;170(3):659–662. doi: 10.1093/infdis/170.3.659. [DOI] [PubMed] [Google Scholar]
  33. Sypek J. P., Chung C. L., Mayor S. E., Subramanyam J. M., Goldman S. J., Sieburth D. S., Wolf S. F., Schaub R. G. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med. 1993 Jun 1;177(6):1797–1802. doi: 10.1084/jem.177.6.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Titus R. G., Ceredig R., Cerottini J. C., Louis J. A. Therapeutic effect of anti-L3T4 monoclonal antibody GK1.5 on cutaneous leishmaniasis in genetically-susceptible BALB/c mice. J Immunol. 1985 Sep;135(3):2108–2114. [PubMed] [Google Scholar]
  35. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–276. doi: 10.1146/annurev.iy.13.040195.001343. [DOI] [PubMed] [Google Scholar]
  36. Vodovotz Y., Bogdan C., Paik J., Xie Q. W., Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med. 1993 Aug 1;178(2):605–613. doi: 10.1084/jem.178.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang Z. E., Reiner S. L., Zheng S., Dalton D. K., Locksley R. M. CD4+ effector cells default to the Th2 pathway in interferon gamma-deficient mice infected with Leishmania major. J Exp Med. 1994 Apr 1;179(4):1367–1371. doi: 10.1084/jem.179.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wynn T. A., Eltoum I., Cheever A. W., Lewis F. A., Gause W. C., Sher A. Analysis of cytokine mRNA expression during primary granuloma formation induced by eggs of Schistosoma mansoni. J Immunol. 1993 Aug 1;151(3):1430–1440. [PubMed] [Google Scholar]
  39. Zwingenberger K., Harms G., Pedrosa C., Omena S., Sandkamp B., Neifer S. Determinants of the immune response in visceral leishmaniasis: evidence for predominance of endogenous interleukin 4 over interferon-gamma production. Clin Immunol Immunopathol. 1990 Nov;57(2):242–249. doi: 10.1016/0090-1229(90)90038-r. [DOI] [PubMed] [Google Scholar]
  40. van Lunzen J., Kern P., Schmitz J., Brzoska J., Flessenkämper S., Dietrich M. Short term treatment of visceral leishmaniasis of the Old World with low dose interferon gamma and pentavalent antimony. Infection. 1993 Nov-Dec;21(6):362–366. doi: 10.1007/BF01728914. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES