Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3293–3299. doi: 10.1128/iai.65.8.3293-3299.1997

Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus.

V K Dhawan 1, M R Yeaman 1, A L Cheung 1, E Kim 1, P M Sullam 1, A S Bayer 1
PMCID: PMC175466  PMID: 9234789

Abstract

Thrombin-induced platelet microbicidal protein (tPMP) is secreted by rabbit platelets following thrombin stimulation, and it kills common endovascular pathogens in vitro, including Staphylococcus aureus. Therefore, pathogens which exhibit tPMP resistance in vitro possess a potential survival advantage in vivo at sites of endovascular damage. We generated an isogenic S. aureus strain pair, differing in tPMP susceptibility, by transposon (Tn551) mutagenesis of a tPMP-susceptible (tPMPs) parental strain (ISP479) to derive a stably tPMP-resistant (tPMPr) strain, ISP479R. ISP479 and ISP479R were equivalent in vitro in the following phenotypes: biotyping, antiobiograms, platelet adherence and aggregation, growth kinetics, cell wall-associated protein A expression, and fibrinogen binding. Genotypic comparisons of chromosomal DNA of strains ISP479 and ISP479R following restriction endonuclease digestion revealed indistinguishable pulsed-field gel electrophoretic patterns. The genotype exhibited by strain ISP479R was linked to the tPMP-resistant phenotype, as it was transducible into the initially tPMP-susceptible parental strain, ISP479. Southern hybridization verified the presence of a single copy of Tn551 in the same chromosomal restriction site of both ISP479R and tPMPr transductants of ISP479. The correlation of in vitro tPMP susceptibility phenotypes with the ability to induce experimental endocarditis (a prototypical endovascular infection) was evaluated. Despite equivalent rates of endocarditis induction, animals infected with strain ISP479R achieved significantly higher vegetation bacterial densities over a 7-day post-challenge period than did animals infected with strain ISP479. These data suggest that tPMPr microbial strains have a selective advantage in experimental staphylococcal endocarditis. Furthermore, the major impact of tPMP resistance upon endocarditis pathogenesis appears to involve a postvalvular adherence event(s), most probably by facilitating bacterial proliferation within vegetations.

Full Text

The Full Text of this article is available as a PDF (356.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balwit J. M., van Langevelde P., Vann J. M., Proctor R. A. Gentamicin-resistant menadione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells. J Infect Dis. 1994 Oct;170(4):1033–1037. doi: 10.1093/infdis/170.4.1033. [DOI] [PubMed] [Google Scholar]
  2. Bayer A. S., Sullam P. M., Ramos M., Li C., Cheung A. L., Yeaman M. R. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains. Infect Immun. 1995 Sep;63(9):3634–3641. doi: 10.1128/iai.63.9.3634-3641.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer A. S., Yih J., Chiu C. Y., Nast C. C. Pathogenic effects of monocytopenia, granulocytopenia and dexamethasone on the course of experimental Pseudomonas aeruginosa endocarditis in rabbits. Chemotherapy. 1989;35(4):278–288. doi: 10.1159/000238683. [DOI] [PubMed] [Google Scholar]
  4. Cheung A. L., Eberhardt K. J., Chung E., Yeaman M. R., Sullam P. M., Ramos M., Bayer A. S. Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest. 1994 Nov;94(5):1815–1822. doi: 10.1172/JCI117530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheung A. L., Wolz C., Yeaman M. R., Bayer A. S. Insertional inactivation of a chromosomal locus that modulates expression of potential virulence determinants in Staphylococcus aureus. J Bacteriol. 1995 Jun;177(11):3220–3226. doi: 10.1128/jb.177.11.3220-3226.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheung A. L., Yeaman M. R., Sullam P. M., Witt M. D., Bayer A. S. Role of the sar locus of Staphylococcus aureus in induction of endocarditis in rabbits. Infect Immun. 1994 May;62(5):1719–1725. doi: 10.1128/iai.62.5.1719-1725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dankert J., van der Werff J., Zaat S. A., Joldersma W., Klein D., Hess J. Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis. Infect Immun. 1995 Feb;63(2):663–671. doi: 10.1128/iai.63.2.663-671.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake T. A., Pang M. Effects of interleukin-1, lipopolysaccharide, and streptococci on procoagulant activity of cultured human cardiac valve endothelial and stromal cells. Infect Immun. 1989 Feb;57(2):507–512. doi: 10.1128/iai.57.2.507-512.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drake T. A., Pang M. Staphylococcus aureus induces tissue factor expression in cultured human cardiac valve endothelium. J Infect Dis. 1988 Apr;157(4):749–756. doi: 10.1093/infdis/157.4.749. [DOI] [PubMed] [Google Scholar]
  10. Durack D. T., Beeson P. B. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol. 1972 Feb;53(1):44–49. [PMC free article] [PubMed] [Google Scholar]
  11. Durack D. T. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol. 1975 Feb;115(2):81–89. doi: 10.1002/path.1711150204. [DOI] [PubMed] [Google Scholar]
  12. Flock J. I., Hienz S. A., Heimdahl A., Schennings T. Reconsideration of the role of fibronectin binding in endocarditis caused by Staphylococcus aureus. Infect Immun. 1996 May;64(5):1876–1878. doi: 10.1128/iai.64.5.1876-1878.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Groisman E. A., Parra-Lopez C., Salcedo M., Lipps C. J., Heffron F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11939–11943. doi: 10.1073/pnas.89.24.11939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hackbarth C. J., Chambers H. F. Methicillin-resistant staphylococci: genetics and mechanisms of resistance. Antimicrob Agents Chemother. 1989 Jul;33(7):991–994. doi: 10.1128/aac.33.7.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herrmann M., Suchard S. J., Boxer L. A., Waldvogel F. A., Lew P. D. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun. 1991 Jan;59(1):279–288. doi: 10.1128/iai.59.1.279-288.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herzberg M. C., Gong K., MacFarlane G. D., Erickson P. R., Soberay A. H., Krebsbach P. H., Manjula G., Schilling K., Bowen W. H. Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect Immun. 1990 Feb;58(2):515–522. doi: 10.1128/iai.58.2.515-522.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herzberg M. C., MacFarlane G. D., Gong K., Armstrong N. N., Witt A. R., Erickson P. R., Meyer M. W. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect Immun. 1992 Nov;60(11):4809–4818. doi: 10.1128/iai.60.11.4809-4818.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moreillon P., Entenza J. M., Francioli P., McDevitt D., Foster T. J., François P., Vaudaux P. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun. 1995 Dec;63(12):4738–4743. doi: 10.1128/iai.63.12.4738-4743.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Novick R. P. Genetic systems in staphylococci. Methods Enzymol. 1991;204:587–636. doi: 10.1016/0076-6879(91)04029-n. [DOI] [PubMed] [Google Scholar]
  20. Prober C. G., Dougherty S. S., Vosti K. L., Yeager A. S. Comparison of a micromethod for performance of the serum bactericidal test with the standard tube dilution method. Antimicrob Agents Chemother. 1979 Jul;16(1):46–48. doi: 10.1128/aac.16.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ramos M. C., Ing M., Kim E., Witt M. D., Bayer A. S. Ampicillin-sulbactam is effective in prevention and therapy of experimental endocarditis caused by beta-lactamase-producing coagulase-negative staphylococci. Antimicrob Agents Chemother. 1996 Jan;40(1):97–101. doi: 10.1128/aac.40.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scheld W. M., Valone J. A., Sande M. A. Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J Clin Invest. 1978 May;61(5):1394–1404. doi: 10.1172/JCI109057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Struelens M. J., Deplano A., Godard C., Maes N., Serruys E. Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J Clin Microbiol. 1992 Oct;30(10):2599–2605. doi: 10.1128/jcm.30.10.2599-2605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sullam P. M., Bayer A. S., Foss W. M., Cheung A. L. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect Immun. 1996 Dec;64(12):4915–4921. doi: 10.1128/iai.64.12.4915-4921.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sullam P. M., Frank U., Yeaman M. R., Täuber M. G., Bayer A. S., Chambers H. F. Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect Dis. 1993 Oct;168(4):910–914. doi: 10.1093/infdis/168.4.910. [DOI] [PubMed] [Google Scholar]
  26. Wu T., Yeaman M. R., Bayer A. S. In vitro resistance to platelet microbicidal protein correlates with endocarditis source among bacteremic staphylococcal and streptococcal isolates. Antimicrob Agents Chemother. 1994 Apr;38(4):729–732. doi: 10.1128/aac.38.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yeaman M. R., Ibrahim A. S., Edwards J. E., Jr, Bayer A. S., Ghannoum M. A. Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro. Antimicrob Agents Chemother. 1993 Mar;37(3):546–553. doi: 10.1128/aac.37.3.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yeaman M. R., Norman D. C., Bayer A. S. Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Aug;36(8):1665–1670. doi: 10.1128/aac.36.8.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yeaman M. R., Puentes S. M., Norman D. C., Bayer A. S. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992 Mar;60(3):1202–1209. doi: 10.1128/iai.60.3.1202-1209.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yeaman M. R., Soldan S. S., Ghannoum M. A., Edwards J. E., Jr, Filler S. G., Bayer A. S. Resistance to platelet microbicidal protein results in increased severity of experimental Candida albicans endocarditis. Infect Immun. 1996 Apr;64(4):1379–1384. doi: 10.1128/iai.64.4.1379-1384.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yeaman M. R., Sullam P. M., Dazin P. F., Bayer A. S. Platelet microbicidal protein alone and in combination with antibiotics reduces Staphylococcus aureus adherence to platelets in vitro. Infect Immun. 1994 Aug;62(8):3416–3423. doi: 10.1128/iai.62.8.3416-3423.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yeaman M. R., Tang Y. Q., Shen A. J., Bayer A. S., Selsted M. E. Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect Immun. 1997 Mar;65(3):1023–1031. doi: 10.1128/iai.65.3.1023-1031.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES