Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3304–3309. doi: 10.1128/iai.65.8.3304-3309.1997

Ecto-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exoenzyme S.

D A Knight 1, J T Barbieri 1
PMCID: PMC175468  PMID: 9234791

Abstract

Pseudomonas aeruginosa produces two ADP-ribosyltransferases, exotoxin A and exoenzyme S (ExoS). Although the physiological target protein remains to be defined, ExoS has been shown to ADP-ribosylate several eukaryotic proteins in vitro, including vimentin and members of the family of low-molecular-weight GTP-binding proteins. Recently, ExoS ADP-ribosyltransferase activity has been detected in the pleural fluid of rabbits infected with P. aeruginosa. This observation prompted an examination of the potential for ExoS to function as an ecto-ADP-ribosyltransferase. We have observed that ExoS preferentially ADP-ribosylated two extracellular serum proteins with molecular masses of 150 and 27 kDa. The ADP-ribosylation of these serum proteins by ExoS was stimulated by, but not dependent upon, exogenous FAS (for factor activating exoenzyme S), which indicated that serum contained endogenous FAS activity. Biochemical analysis showed that the 150-kDa ADP-ribosylated protein was immunoglobulin of the immunoglobulin G (IgG) and IgA classes. Subtyping showed that ExoS preferentially ADP-ribosylated human IgG3 and that ADP-ribosylation occurred within its Fc region. The 27-kDa protein ADP-ribosylated by ExoS was determined to be apolipoprotein A1. These data demonstrate ecto-ADP-ribosyltransferase activity by ExoS. This may extend the potential physiological consequences of ExoS during infection by P. aeruginosa beyond the implicated type III secretion-mediated intracellular delivery of ExoS into sensitive eukaryotic cells.

Full Text

The Full Text of this article is available as a PDF (915.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Just I., Rosenthal W. Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun. 1988 Oct 14;156(1):361–367. doi: 10.1016/s0006-291x(88)80849-0. [DOI] [PubMed] [Google Scholar]
  2. Barbieri J. T., Moloney B. K., Mende-Mueller L. M. Expression and secretion of the S-1 subunit and C180 peptide of pertussis toxin in Escherichia coli. J Bacteriol. 1989 Aug;171(8):4362–4369. doi: 10.1128/jb.171.8.4362-4369.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjorn M. J., Pavlovskis O. R., Thompson M. R., Iglewski B. H. Production of exoenzyme S during Pseudomonas aeruginosa infections of burned mice. Infect Immun. 1979 Jun;24(3):837–842. doi: 10.1128/iai.24.3.837-842.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodey G. P., Bolivar R., Fainstein V., Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983 Mar-Apr;5(2):279–313. doi: 10.1093/clinids/5.2.279. [DOI] [PubMed] [Google Scholar]
  5. Coburn J., Dillon S. T., Iglewski B. H., Gill D. M. Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect Immun. 1989 Mar;57(3):996–998. doi: 10.1128/iai.57.3.996-998.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coburn J., Kane A. V., Feig L., Gill D. M. Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem. 1991 Apr 5;266(10):6438–6446. [PubMed] [Google Scholar]
  7. Coburn J. Pseudomonas aeruginosa exoenzyme S. Curr Top Microbiol Immunol. 1992;175:133–143. doi: 10.1007/978-3-642-76966-5_7. [DOI] [PubMed] [Google Scholar]
  8. Coburn J., Wyatt R. T., Iglewski B. H., Gill D. M. Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem. 1989 May 25;264(15):9004–9008. [PubMed] [Google Scholar]
  9. Fleiszig S. M., Wiener-Kronish J. P., Miyazaki H., Vallas V., Mostov K. E., Kanada D., Sawa T., Yen T. S., Frank D. W. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun. 1997 Feb;65(2):579–586. doi: 10.1128/iai.65.2.579-586.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freed E., Symons M., Macdonald S. G., McCormick F., Ruggieri R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994 Sep 16;265(5179):1713–1716. doi: 10.1126/science.8085158. [DOI] [PubMed] [Google Scholar]
  11. Kim U. H., Kim M. K., Kim J. S., Han M. K., Park B. H., Kim H. R. Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch Biochem Biophys. 1993 Aug 15;305(1):147–152. doi: 10.1006/abbi.1993.1404. [DOI] [PubMed] [Google Scholar]
  12. Knight D. A., Finck-Barbançon V., Kulich S. M., Barbieri J. T. Functional domains of Pseudomonas aeruginosa exoenzyme S. Infect Immun. 1995 Aug;63(8):3182–3186. doi: 10.1128/iai.63.8.3182-3186.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krueger K. M., Barbieri J. T. The family of bacterial ADP-ribosylating exotoxins. Clin Microbiol Rev. 1995 Jan;8(1):34–47. doi: 10.1128/cmr.8.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kudoh I., Wiener-Kronish J. P., Hashimoto S., Pittet J. F., Frank D. Exoproduct secretions of Pseudomonas aeruginosa strains influence severity of alveolar epithelial injury. Am J Physiol. 1994 Nov;267(5 Pt 1):L551–L556. doi: 10.1152/ajplung.1994.267.5.L551. [DOI] [PubMed] [Google Scholar]
  15. Kulich S. M., Frank D. W., Barbieri J. T. Purification and characterization of exoenzyme S from Pseudomonas aeruginosa 388. Infect Immun. 1993 Jan;61(1):307–313. doi: 10.1128/iai.61.1.307-313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kulich S. M., Yahr T. L., Mende-Mueller L. M., Barbieri J. T., Frank D. W. Cloning the structural gene for the 49-kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388. J Biol Chem. 1994 Apr 8;269(14):10431–10437. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Leffers H., Madsen P., Rasmussen H. H., Honoré B., Andersen A. H., Walbum E., Vandekerckhove J., Celis J. E. Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway. J Mol Biol. 1993 Jun 20;231(4):982–998. doi: 10.1006/jmbi.1993.1346. [DOI] [PubMed] [Google Scholar]
  19. Liu S., Yahr T. L., Frank D. W., Barbieri J. T. Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J Bacteriol. 1997 Mar;179(5):1609–1613. doi: 10.1128/jb.179.5.1609-1613.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Michiels T., Cornelis G. R. Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol. 1991 Mar;173(5):1677–1685. doi: 10.1128/jb.173.5.1677-1685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nemoto E., Yu Y., Dennert G. Cell surface ADP-ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1) function in T cells. J Immunol. 1996 Oct 15;157(8):3341–3349. [PubMed] [Google Scholar]
  22. Ng W. G., Donnell G. N., Bergren W. Deficiency of erythrocyte nicotinamide adenine dinucleotide nucleosidase (NADase) activity in the Negro. Nature. 1968 Jan 6;217(5123):64–65. doi: 10.1038/217064a0. [DOI] [PubMed] [Google Scholar]
  23. Nicas T. I., Bradley J., Lochner J. E., Iglewski B. H. The role of exoenzyme S in infections with Pseudomonas aeruginosa. J Infect Dis. 1985 Oct;152(4):716–721. doi: 10.1093/infdis/152.4.716. [DOI] [PubMed] [Google Scholar]
  24. Nicas T. I., Frank D. W., Stenzel P., Lile J. D., Iglewski B. H. Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections. Eur J Clin Microbiol. 1985 Apr;4(2):175–179. doi: 10.1007/BF02013593. [DOI] [PubMed] [Google Scholar]
  25. Nicas T. I., Iglewski B. H. Contribution of exoenzyme S to the virulence of Pseudomonas aeruginosa. Antibiot Chemother (1971) 1985;36:40–48. doi: 10.1159/000410470. [DOI] [PubMed] [Google Scholar]
  26. Nicas T. I., Iglewski B. H. Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun. 1984 Aug;45(2):470–474. doi: 10.1128/iai.45.2.470-474.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nicas T. I., Iglewski B. H. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol. 1985 Apr;31(4):387–392. doi: 10.1139/m85-074. [DOI] [PubMed] [Google Scholar]
  28. Olson J. C., McGuffie E. M., Frank D. W. Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect Immun. 1997 Jan;65(1):248–256. doi: 10.1128/iai.65.1.248-256.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Payne D. M., Jacobson E. L., Moss J., Jacobson M. K. Modification of proteins by mono(ADP-ribosylation) in vivo. Biochemistry. 1985 Dec 17;24(26):7540–7549. doi: 10.1021/bi00347a006. [DOI] [PubMed] [Google Scholar]
  30. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pressler T., Jensen E. T., Espersen F., Pedersen S. S., Høiby N. High levels of complement-activation capacity in sera from patients with cystic fibrosis correlate with high levels of IgG3 antibodies to Pseudomonas aeruginosa antigens and poor lung function. Pediatr Pulmonol. 1995 Aug;20(2):71–77. doi: 10.1002/ppul.1950200204. [DOI] [PubMed] [Google Scholar]
  32. Reuther G. W., Fu H., Cripe L. D., Collier R. J., Pendergast A. M. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science. 1994 Oct 7;266(5182):129–133. doi: 10.1126/science.7939633. [DOI] [PubMed] [Google Scholar]
  33. Rigby M. R., Bortell R., Stevens L. A., Moss J., Kanaitsuka T., Shigeta H., Mordes J. P., Greiner D. L., Rossini A. A. Rat RT6.2 and mouse Rt6 locus 1 are NAD+: arginine ADP ribosyltransferases with auto-ADP ribosylation activity. J Immunol. 1996 Jun 1;156(11):4259–4265. [PubMed] [Google Scholar]
  34. Rosqvist R., Magnusson K. E., Wolf-Watz H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 1994 Feb 15;13(4):964–972. doi: 10.1002/j.1460-2075.1994.tb06341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsuchiya M., Hara N., Yamada K., Osago H., Shimoyama M. Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J Biol Chem. 1994 Nov 4;269(44):27451–27457. [PubMed] [Google Scholar]
  36. Yahr T. L., Barbieri J. T., Frank D. W. Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol. 1996 Mar;178(5):1412–1419. doi: 10.1128/jb.178.5.1412-1419.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yahr T. L., Goranson J., Frank D. W. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol. 1996 Dec;22(5):991–1003. doi: 10.1046/j.1365-2958.1996.01554.x. [DOI] [PubMed] [Google Scholar]
  38. Zolkiewska A., Okazaki I. J., Moss J. Vertebrate mono-ADP-ribosyltransferases. Mol Cell Biochem. 1994 Sep;138(1-2):107–112. doi: 10.1007/BF00928450. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES