Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3317–3327. doi: 10.1128/iai.65.8.3317-3327.1997

Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection.

R Hernandez-Pando 1, L Pavön 1, K Arriaga 1, H Orozco 1, V Madrid-Marina 1, G Rook 1
PMCID: PMC175470  PMID: 9234793

Abstract

Mycobacteria are ubiquitous in the environment, but they are not part of the normal human microbial flora. It has been suggested that variable contact with mycobacteria can influence susceptibility to mycobacterial pathogens and the efficacy of subsequent Mycobacterium bovis BCG vaccination. To test this, mice were immunized with high or low doses of an environmental saprophyte, M. vaccae, that is intensely immunogenic as an autoclaved preparation. Two months later, they received an intratracheal challenge with M. tuberculosis H37Rv. Recipients of a low Th1-inducing dose (10(7) organisms) were partially protected and maintained a high ratio of interleukin 2 (IL-2)-positive to IL-4-positive cells in the perivascular, peribronchial, and granulomatous areas of the lung, whereas in unimmunized controls the IL-4-positive cells increased markedly between days 21 and 28. In contrast, recipients of the high dose (10(9) organisms), which primes Th2 as well as Th1 cytokine production, died more rapidly than unimmunized controls and showed massive pneumonia from day 7. The ratio of IL-2-positive to IL-4-positive cells in all compartments of the lung rapidly fell to 1 by day 14 for these animals. These events correlated with cytokine mRNA profiles and with increases in the local toxicity of tumor necrosis factor alpha (TNF-alpha), demonstrable only when a major Th2 component was present. These data indicate that cross-reactive epitopes present in an environmental saprophyte can evoke either protective responses or responses that increase susceptibility to M. tuberculosis. The latter are associated with the presence of a Th2 component and increased sensitivity to TNF-alpha.

Full Text

The Full Text of this article is available as a PDF (581.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom B. R., Flynn J., McDonough K., Kress Y., Chan J. Experimental approaches to mechanisms of protection and pathogenesis in M. tuberculosis infection. Immunobiology. 1994 Oct;191(4-5):526–536. doi: 10.1016/S0171-2985(11)80459-6. [DOI] [PubMed] [Google Scholar]
  2. Bretscher P. A. A strategy to improve the efficacy of vaccination against tuberculosis and leprosy. Immunol Today. 1992 Sep;13(9):342–345. doi: 10.1016/0167-5699(92)90168-7. [DOI] [PubMed] [Google Scholar]
  3. Bretscher P. A., Wei G., Menon J. N., Bielefeldt-Ohmann H. Establishment of stable, cell-mediated immunity that makes "susceptible" mice resistant to Leishmania major. Science. 1992 Jul 24;257(5069):539–542. doi: 10.1126/science.1636090. [DOI] [PubMed] [Google Scholar]
  4. Chan J., Xing Y., Magliozzo R. S., Bloom B. R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992 Apr 1;175(4):1111–1122. doi: 10.1084/jem.175.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993 Sep;15(3):532-4, 536-7. [PubMed] [Google Scholar]
  6. Fine P. E., Ponnighaus J. M., Maine N., Clarkson J. A., Bliss L. Protective efficacy of BCG against leprosy in Northern Malawi. Lancet. 1986 Aug 30;2(8505):499–502. doi: 10.1016/s0140-6736(86)90367-3. [DOI] [PubMed] [Google Scholar]
  7. Fine P. E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995 Nov 18;346(8986):1339–1345. doi: 10.1016/s0140-6736(95)92348-9. [DOI] [PubMed] [Google Scholar]
  8. Flynn J. L., Goldstein M. M., Chan J., Triebold K. J., Pfeffer K., Lowenstein C. J., Schreiber R., Mak T. W., Bloom B. R. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995 Jun;2(6):561–572. doi: 10.1016/1074-7613(95)90001-2. [DOI] [PubMed] [Google Scholar]
  9. Gibbs J. H., Grange J. M., Beck J. S., Jawad E., Potts R. C., Bothamley G. H., Kardjito T. Early delayed hypersensitivity responses in tuberculin skin tests after heavy occupational exposure to tuberculosis. J Clin Pathol. 1991 Nov;44(11):919–923. doi: 10.1136/jcp.44.11.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hernandez-Pando R., Orozco H., Honour J., Silva P., Leyva R., Rook G. A. Adrenal changes in murine pulmonary tuberculosis; a clue to pathogenesis? FEMS Immunol Med Microbiol. 1995 Sep;12(1):63–72. doi: 10.1111/j.1574-695X.1995.tb00176.x. [DOI] [PubMed] [Google Scholar]
  11. Hernandez-Pando R., Rook G. A. The role of TNF-alpha in T-cell-mediated inflammation depends on the Th1/Th2 cytokine balance. Immunology. 1994 Aug;82(4):591–595. [PMC free article] [PubMed] [Google Scholar]
  12. Hernández-Pando R., Orozcoe H., Sampieri A., Pavón L., Velasquillo C., Larriva-Sahd J., Alcocer J. M., Madrid M. V. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology. 1996 Sep;89(1):26–33. [PMC free article] [PubMed] [Google Scholar]
  13. Hirsch C. S., Ellner J. J., Russell D. G., Rich E. A. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol. 1994 Jan 15;152(2):743–753. [PubMed] [Google Scholar]
  14. Kaplan G. Cytokine regulation of disease progression in leprosy and tuberculosis. Immunobiology. 1994 Oct;191(4-5):564–568. doi: 10.1016/S0171-2985(11)80463-8. [DOI] [PubMed] [Google Scholar]
  15. Kindler V., Sappino A. P., Grau G. E., Piguet P. F., Vassalli P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell. 1989 Mar 10;56(5):731–740. doi: 10.1016/0092-8674(89)90676-4. [DOI] [PubMed] [Google Scholar]
  16. Ladel C. H., Daugelat S., Kaufmann S. H. Immune response to Mycobacterium bovis bacille Calmette Guérin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur J Immunol. 1995 Feb;25(2):377–384. doi: 10.1002/eji.1830250211. [DOI] [PubMed] [Google Scholar]
  17. Ladel C. H., Hess J., Daugelat S., Mombaerts P., Tonegawa S., Kaufmann S. H. Contribution of alpha/beta and gamma/delta T lymphocytes to immunity against Mycobacterium bovis bacillus Calmette Guérin: studies with T cell receptor-deficient mutant mice. Eur J Immunol. 1995 Mar;25(3):838–846. doi: 10.1002/eji.1830250331. [DOI] [PubMed] [Google Scholar]
  18. Moreira A. L., Sampaio E. P., Zmuidzinas A., Frindt P., Smith K. A., Kaplan G. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993 Jun 1;177(6):1675–1680. doi: 10.1084/jem.177.6.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orme I. M., Roberts A. D., Griffin J. P., Abrams J. S. Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J Immunol. 1993 Jul 1;151(1):518–525. [PubMed] [Google Scholar]
  20. Orme I. M. The role of CD8+ T cells in immunity to tuberculosis infection. Trends Microbiol. 1993 Jun;1(3):77–78. doi: 10.1016/0966-842x(93)90109-5. [DOI] [PubMed] [Google Scholar]
  21. Rook G. A., Hernandez-Pando R. The pathogenesis of tuberculosis. Annu Rev Microbiol. 1996;50:259–284. doi: 10.1146/annurev.micro.50.1.259. [DOI] [PubMed] [Google Scholar]
  22. Schauf V., Rom W. N., Smith K. A., Sampaio E. P., Meyn P. A., Tramontana J. M., Cohn Z. A., Kaplan G. Cytokine gene activation and modified responsiveness to interleukin-2 in the blood of tuberculosis patients. J Infect Dis. 1993 Oct;168(4):1056–1059. doi: 10.1093/infdis/168.4.1056. [DOI] [PubMed] [Google Scholar]
  23. Silva C. L., Lowrie D. B. A single mycobacterial protein (hsp 65) expressed by a transgenic antigen-presenting cell vaccinates mice against tuberculosis. Immunology. 1994 Jun;82(2):244–248. [PMC free article] [PubMed] [Google Scholar]
  24. Stanford J. L., Shield M. J., Rook G. A. How environmental mycobacteria may predetermine the protective efficacy of BCG. Tubercle. 1981 Mar;62(1):55–62. doi: 10.1016/0041-3879(81)90037-4. [DOI] [PubMed] [Google Scholar]
  25. Sánchez F. O., Rodríguez J. I., Agudelo G., García L. F. Immune responsiveness and lymphokine production in patients with tuberculosis and healthy controls. Infect Immun. 1994 Dec;62(12):5673–5678. doi: 10.1128/iai.62.12.5673-5678.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanaka Y., Morita C. T., Tanaka Y., Nieves E., Brenner M. B., Bloom B. R. Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature. 1995 May 11;375(6527):155–158. doi: 10.1038/375155a0. [DOI] [PubMed] [Google Scholar]
  27. Yong A. J., Grange J. M., Tee R. D., Beck J. S., Bothamley G. H., Kemeny D. M., Kardjito T. Total and anti-mycobacterial IgE levels in serum from patients with tuberculosis and leprosy. Tubercle. 1989 Dec;70(4):273–279. doi: 10.1016/0041-3879(89)90021-4. [DOI] [PubMed] [Google Scholar]
  28. Zhang M., Lin Y., Iyer D. V., Gong J., Abrams J. S., Barnes P. F. T-cell cytokine responses in human infection with Mycobacterium tuberculosis. Infect Immun. 1995 Aug;63(8):3231–3234. doi: 10.1128/iai.63.8.3231-3234.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. al Attiyah R., Moreno C., Rook G. A. TNF alpha-mediated tissue damage in mouse footpads primed with mycobacterial preparations. Res Immunol. 1992 Jul-Aug;143(6):601–610. doi: 10.1016/0923-2494(92)80041-i. [DOI] [PubMed] [Google Scholar]
  30. al Attiyah R., Rosen H., Rook G. A. A model for the investigation of factors influencing haemorrhagic necrosis mediated by tumour necrosis factor in tissue sites primed with mycobacterial antigen preparations. Clin Exp Immunol. 1992 Jun;88(3):537–542. doi: 10.1111/j.1365-2249.1992.tb06483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES