Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2004 Dec;63(12):1632–1637. doi: 10.1136/ard.2003.018440

Leflunomide inhibits transendothelial migration of peripheral blood mononuclear cells

J Grisar 1, M Aringer 1, M Koller 1, G Stummvoll 1, D Eselbock 1, B Zwolfer 1, C Steiner 1, B Zierhut 1, L Wagner 1, P Pietschmann 1, J Smolen 1
PMCID: PMC1754829  PMID: 15547088

Abstract

Objectives: To test whether the active metabolite of leflunomide (LEF-M), in addition to blocking the proliferation of activated lymphocytes by inhibiting dihydro-orotate dehydrogenase (DHODH), influences the transendothelial migration (TEM) of peripheral blood mononuclear cells (PBMC).

Methods: In an in vitro model of PBMC transmigration through an endothelial cell (EC) barrier, PBMC were re-collected in three groups: cells not adherent to the EC, cells bound to, and cells which had migrated through, the EC layer. Experiments in which cells were pretreated with LEF-M (in the absence or in the presence of uridine) were compared with parallel experiments in the presence of medium alone.

Results: Preincubation of EC with LEF-M led to a 36 (SEM 16)% reduction in PBMC TEM (p<0.05). Likewise, preincubation of PBMC induced a reduction in their TEM of 39 (9)% (p<0.005). Incubation of both PBMC and EC with LEF-M had an additive effect (mean reduction of 48 (6)%, p<0.005). Incubation of PBMC with LEF-M also decreased monocytic CD44 expression (p<0.005) and PBMC-hyaluronan binding (p<0.05). Incubation of cells with LEF-M and uridine in addition to LEF-M reversed the inhibition of migration, suggesting that the observed effects were due to DHODH inhibition. Fluorocytometric analysis of PBMC subsets within the migrated population showed a decrease of monocytes, but not of B or T cells, after LEF-M treatment.

Conclusions: LEF-M reduces monocytic adhesion molecule expression and TEM and may thus interfere with monocyte and EC activities in RA. Thus, the clinical effects of leflunomide may, at least in part, be due to blocking cell traffic into the inflamed synovia.

Full Text

The Full Text of this article is available as a PDF (91.4 KB).

Figure 1.

Figure 1

 LEF-M decreases the transendothelial migration of PBMC both in healthy subjects and patients with RA. In 14 experiments, EC and PBMC of healthy volunteers were preincubated with 100 µM LEF-M for 24 hours. A significant decrease in the percentage of migrated PBMC was found as compared with control experiments (17 (3)% v 7 (1)%, p<0.005).

Figure 2.

Figure 2

 MTX does not significantly affect TEM (MTX at all doses v controls p = NS), contrasting with the effect of LEF-M (p<0.02 v control). Dex was highly effective in TEM inhibition (p<0.02 at doses of 1 and 10 nmol/l Dex v controls, p<0.05 at a dose of 100 nmol/l Dex v control).

Figure 3.

Figure 3

 Treatment of either PBMC or EC with LEF-M decreases the transendothelial migration of PBMC. Preincubation for 24 hours of PBMC or EC or PBMC and EC with 100 µM LEF-M induced a significant decrease in the percentage of migrated cells (PBMC 39 (9)% v 48 (6)%, p<0.005; EC: 36 (16)% v 48 (6)%, p<0.05).

Figure 4.

Figure 4

 The effect of transendothelial migration is reversed by uridine. When PBMC and EC were incubated for 24 hours with both LEF-M and uridine, transendothelial migration significantly increased as compared with parallel control experiments where cells were incubated solely with LEF-M (decreased by 48 (8)% with LEF-M v 8 (1)8% with LEF-M and uridine, p<0.025). However, no significant decrease between untreated PBMC and PBMC preincubated with LEF-M and uridine was seen.

Figure 5.

Figure 5

 LEF-M decreases the migration of CD14 positive cells. In the presence of LEF-M the percentage of CD14 positive cells (that is, monocytes) in the migrated population significantly decreased (by 15 (4)%, p = 0.006), whereas T and B lymphocytes showed no altered cell counts in the migrated fraction.

Figure 6.

Figure 6

 Dose-response of LEF-M. Dose-response experiments with highly purified monocytes indicated that a dose of 100 µmol/l LEF-M clearly inhibits TEM. This concentration was used for all other experiments.

Figure 7.

Figure 7

 Leflunomide does not influence the chemotaxis of PBMC or monocytes. When chemotaxis induced by increasing concentrations of MCP-3 was assayed for PBMC (A) or monocytes (B), no difference could be seen between untreated cells or cells pretreated with 100 µM LEF-M.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell A. L., Magill M. K., McKane R., Irvine A. E. Human blood and synovial fluid neutrophils cultured in vitro undergo programmed cell death which is promoted by the addition of synovial fluid. Ann Rheum Dis. 1995 Nov;54(11):910–915. doi: 10.1136/ard.54.11.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breedveld F. C., Dayer J. M. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis. 2000 Nov;59(11):841–849. doi: 10.1136/ard.59.11.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown K. L., Maiti A., Johnson P. Role of sulfation in CD44-mediated hyaluronan binding induced by inflammatory mediators in human CD14(+) peripheral blood monocytes. J Immunol. 2001 Nov 1;167(9):5367–5374. doi: 10.4049/jimmunol.167.9.5367. [DOI] [PubMed] [Google Scholar]
  4. Bruneau J. M., Yea C. M., Spinella-Jaegle S., Fudali C., Woodward K., Robson P. A., Sautès C., Westwood R., Kuo E. A., Williamson R. A. Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. Biochem J. 1998 Dec 1;336(Pt 2):299–303. doi: 10.1042/bj3360299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpenito C., Pyszniak A. M., Takei F. ICAM-2 provides a costimulatory signal for T cell stimulation by allogeneic class II MHC. Scand J Immunol. 1997 Mar;45(3):248–254. doi: 10.1046/j.1365-3083.1997.d01-391.x. [DOI] [PubMed] [Google Scholar]
  6. Cherwinski H. M., Byars N., Ballaron S. J., Nakano G. M., Young J. M., Ransom J. T. Leflunomide interferes with pyrimidine nucleotide biosynthesis. Inflamm Res. 1995 Aug;44(8):317–322. doi: 10.1007/BF01796261. [DOI] [PubMed] [Google Scholar]
  7. Chong A. S., Rezai K., Gebel H. M., Finnegan A., Foster P., Xu X., Williams J. W. Effects of leflunomide and other immunosuppressive agents on T cell proliferation in vitro. Transplantation. 1996 Jan 15;61(1):140–145. doi: 10.1097/00007890-199601150-00026. [DOI] [PubMed] [Google Scholar]
  8. Choy E. H., Panayi G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001 Mar 22;344(12):907–916. doi: 10.1056/NEJM200103223441207. [DOI] [PubMed] [Google Scholar]
  9. DeGrendele H. C., Estess P., Siegelman M. H. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science. 1997 Oct 24;278(5338):672–675. doi: 10.1126/science.278.5338.672. [DOI] [PubMed] [Google Scholar]
  10. Dimitrijevic M., Bartlett R. R. Leflunomide, a novel immunomodulating drug, inhibits homotypic adhesion of peripheral blood and synovial fluid mononuclear cells in rheumatoid arthritis. Inflamm Res. 1996 Nov;45(11):550–556. doi: 10.1007/BF02342226. [DOI] [PubMed] [Google Scholar]
  11. Emery P., Breedveld F. C., Lemmel E. M., Kaltwasser J. P., Dawes P. T., Gömör B., Van Den Bosch F., Nordström D., Bjorneboe O., Dahl R. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. Rheumatology (Oxford) 2000 Jun;39(6):655–665. doi: 10.1093/rheumatology/39.6.655. [DOI] [PubMed] [Google Scholar]
  12. Firestein G. S., Alvaro-Gracia J. M., Maki R., Alvaro-Garcia J. M. Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol. 1990 May 1;144(9):3347–3353. [PubMed] [Google Scholar]
  13. Genestier L., Paillot R., Fournel S., Ferraro C., Miossec P., Revillard J. P. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest. 1998 Jul 15;102(2):322–328. doi: 10.1172/JCI2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greene S., Watanabe K., Braatz-Trulson J., Lou L. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol. 1995 Sep 7;50(6):861–867. doi: 10.1016/0006-2952(95)00255-x. [DOI] [PubMed] [Google Scholar]
  15. Grisar J., Hahn P., Brosch S., Peterlik M., Smolen J. S., Pietschmann P. Phenotypic characteristics of human monocytes undergoing transendothelial migration. Arthritis Res. 2001 Jan 11;3(2):127–132. doi: 10.1186/ar150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson P., Maiti A., Brown K. L., Li R. A role for the cell adhesion molecule CD44 and sulfation in leukocyte-endothelial cell adhesion during an inflammatory response? Biochem Pharmacol. 2000 Mar 1;59(5):455–465. doi: 10.1016/s0006-2952(99)00266-x. [DOI] [PubMed] [Google Scholar]
  17. Kavanaugh A. F., Davis L. S., Jain R. I., Nichols L. A., Norris S. H., Lipsky P. E. A phase I/II open label study of the safety and efficacy of an anti-ICAM-1 (intercellular adhesion molecule-1; CD54) monoclonal antibody in early rheumatoid arthritis. J Rheumatol. 1996 Aug;23(8):1338–1344. [PubMed] [Google Scholar]
  18. Kraan M. C., Reece R. J., Barg E. C., Smeets T. J., Farnell J., Rosenburg R., Veale D. J., Breedveld F. C., Emery P., Tak P. P. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 2000 Aug;43(8):1820–1830. doi: 10.1002/1529-0131(200008)43:8<1820::AID-ANR18>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  19. Kraan M. C., de Koster B. M., Elferink J. G., Post W. J., Breedveld F. C., Tak P. P. Inhibition of neutrophil migration soon after initiation of treatment with leflunomide or methotrexate in patients with rheumatoid arthritis: findings in a prospective, randomized, double-blind clinical trial in fifteen patients. Arthritis Rheum. 2000 Jul;43(7):1488–1495. doi: 10.1002/1529-0131(200007)43:7<1488::AID-ANR11>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  20. Kremer Joel M., Genovese Mark C., Cannon Grant W., Caldwell Jacques R., Cush John J., Furst Daniel E., Luggen Michael E., Keystone Ed, Weisman Michael H., Bensen William M. Concomitant leflunomide therapy in patients with active rheumatoid arthritis despite stable doses of methotrexate. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2002 Nov 5;137(9):726–733. doi: 10.7326/0003-4819-137-9-200211050-00007. [DOI] [PubMed] [Google Scholar]
  21. Manna S. K., Aggarwal B. B. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol. 1999 Feb 15;162(4):2095–2102. [PubMed] [Google Scholar]
  22. Manna S. K., Mukhopadhyay A., Aggarwal B. B. Leflunomide suppresses TNF-induced cellular responses: effects on NF-kappa B, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J Immunol. 2000 Nov 15;165(10):5962–5969. doi: 10.4049/jimmunol.165.10.5962. [DOI] [PubMed] [Google Scholar]
  23. Mikecz K., Brennan F. R., Kim J. H., Glant T. T. Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat Med. 1995 Jun;1(6):558–563. doi: 10.1038/nm0695-558. [DOI] [PubMed] [Google Scholar]
  24. Mikecz K., Dennis K., Shi M., Kim J. H. Modulation of hyaluronan receptor (CD44) function in vivo in a murine model of rheumatoid arthritis. Arthritis Rheum. 1999 Apr;42(4):659–668. doi: 10.1002/1529-0131(199904)42:4<659::AID-ANR8>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  25. Nedvetzki S., Walmsley M., Alpert E., Williams R. O., Feldmann M., Naor D. CD44 involvement in experimental collagen-induced arthritis (CIA). J Autoimmun. 1999 Aug;13(1):39–47. doi: 10.1006/jaut.1999.0294. [DOI] [PubMed] [Google Scholar]
  26. Piemonti L., Monti P., Allavena P., Sironi M., Soldini L., Leone B. E., Socci C., Di Carlo V. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol. 1999 Jun 1;162(11):6473–6481. [PubMed] [Google Scholar]
  27. Pietschmann P., Cush J. J., Lipsky P. E., Oppenheimer-Marks N. Identification of subsets of human T cells capable of enhanced transendothelial migration. J Immunol. 1992 Aug 15;149(4):1170–1178. [PubMed] [Google Scholar]
  28. Reece Richard J., Kraan Maarten C., Radjenovic Aleksandra, Veale Douglas J., O'Connor P. J., Ridgway John P., Gibbon W. W., Breedveld Ferdinand C., Tak Paul P., Emery Paul. Comparative assessment of leflunomide and methotrexate for the treatment of rheumatoid arthritis, by dynamic enhanced magnetic resonance imaging. Arthritis Rheum. 2002 Feb;46(2):366–372. doi: 10.1002/art.10084. [DOI] [PubMed] [Google Scholar]
  29. Roebuck K. A., Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol. 1999 Dec;66(6):876–888. doi: 10.1002/jlb.66.6.876. [DOI] [PubMed] [Google Scholar]
  30. Rückemann K., Fairbanks L. D., Carrey E. A., Hawrylowicz C. M., Richards D. F., Kirschbaum B., Simmonds H. A. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J Biol Chem. 1998 Aug 21;273(34):21682–21691. doi: 10.1074/jbc.273.34.21682. [DOI] [PubMed] [Google Scholar]
  31. Sharp J. T., Strand V., Leung H., Hurley F., Loew-Friedrich I. Treatment with leflunomide slows radiographic progression of rheumatoid arthritis: results from three randomized controlled trials of leflunomide in patients with active rheumatoid arthritis. Leflunomide Rheumatoid Arthritis Investigators Group. Arthritis Rheum. 2000 Mar;43(3):495–505. doi: 10.1002/1529-0131(200003)43:3<495::AID-ANR4>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  32. Smolen J. S., Kalden J. R., Scott D. L., Rozman B., Kvien T. K., Larsen A., Loew-Friedrich I., Oed C., Rosenburg R. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multicentre trial. European Leflunomide Study Group. Lancet. 1999 Jan 23;353(9149):259–266. doi: 10.1016/s0140-6736(98)09403-3. [DOI] [PubMed] [Google Scholar]
  33. Teitelbaum S. L. Bone resorption by osteoclasts. Science. 2000 Sep 1;289(5484):1504–1508. doi: 10.1126/science.289.5484.1504. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES