Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3438–3443. doi: 10.1128/iai.65.8.3438-3443.1997

Local expression of tumor necrosis factor alpha in an experimental model of acute osteomyelitis in rats.

A J Littlewood-Evans 1, M R Hattenberger 1, C Lüscher 1, A Pataki 1, O Zak 1, T O'Reilly 1
PMCID: PMC175486  PMID: 9234809

Abstract

The inflammatory response associated with Staphylococcus aureus osteomyelitis results in extensive bone damage characterized by apparent increases in bone resorption and formation. These results suggest an increased local release of agents capable of modulating bone remodelling. Tumor necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine proposed to play an important role both in normal bone remodelling and in bone diseases; however, its potential role in osteomyelitis is unclear. This study evaluated changes in bone TNF levels during infection, using a rat model of acute osteomyelitis due to S. aureus. Following direct tibial infection, bacterial counts in bone were persistently high (approximately 6 log10 CFU/g of bone over 63 days) and bone weights increased. TNF activity was undetectable in uninfected bone (<0.01 ng/g of bone) but dramatically higher in infected bone (up to 5.2 +/- 3.5 ng/g of bone). Although TNF-alpha mRNA was weakly detected in uninfected bone, osteomyelitis was associated with up to 37-fold increases in expression of both the 1.6- and 2.4-kb transcripts. Both TNF activity and mRNA transcript levels remained elevated throughout the course of infection. TNF-alpha mRNA detected by in situ hybridization was present in osteoblasts as well as in populations of marrow cells and/or inflammatory infiltrate cells. Histopathology of infected bone indicated extensive bone resorption and adjacent areas of formation that were associated with cells expressing TNF-alpha mRNA. These data suggest that the elevated TNF levels induced by experimental infection may be directly related to changes in the histology of bone during osteomyelitis.

Full Text

The Full Text of this article is available as a PDF (625.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aliabadi P., Nikpoor N. Imaging osteomyelitis. Arthritis Rheum. 1994 May;37(5):617–622. doi: 10.1002/art.1780370503. [DOI] [PubMed] [Google Scholar]
  2. Bertolini D. R., Nedwin G. E., Bringman T. S., Smith D. D., Mundy G. R. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986 Feb 6;319(6053):516–518. doi: 10.1038/319516a0. [DOI] [PubMed] [Google Scholar]
  3. Beutler B., Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med. 1987 Feb 12;316(7):379–385. doi: 10.1056/NEJM198702123160705. [DOI] [PubMed] [Google Scholar]
  4. Boyce B. F., Aufdemorte T. B., Garrett I. R., Yates A. J., Mundy G. R. Effects of interleukin-1 on bone turnover in normal mice. Endocrinology. 1989 Sep;125(3):1142–1150. doi: 10.1210/endo-125-3-1142. [DOI] [PubMed] [Google Scholar]
  5. Buchan G., Barrett K., Turner M., Chantry D., Maini R. N., Feldmann M. Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha. Clin Exp Immunol. 1988 Sep;73(3):449–455. [PMC free article] [PubMed] [Google Scholar]
  6. Centrella M., McCarthy T. L., Canalis E. Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology. 1988 Sep;123(3):1442–1448. doi: 10.1210/endo-123-3-1442. [DOI] [PubMed] [Google Scholar]
  7. Chikanza I. C., Roux-Lombard P., Dayer J. M., Panayi G. S. Tumour necrosis factor soluble receptors behave as acute phase reactants following surgery in patients with rheumatoid arthritis, chronic osteomyelitis and osteoarthritis. Clin Exp Immunol. 1993 Apr;92(1):19–22. doi: 10.1111/j.1365-2249.1993.tb05941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Chu C. Q., Field M., Feldmann M., Maini R. N. Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis Rheum. 1991 Sep;34(9):1125–1132. doi: 10.1002/art.1780340908. [DOI] [PubMed] [Google Scholar]
  10. Cunningham R., Cockayne A., Humphreys H. Clinical and molecular aspects of the pathogenesis of Staphylococcus aureus bone and joint infections. J Med Microbiol. 1996 Mar;44(3):157–164. doi: 10.1099/00222615-44-3-157. [DOI] [PubMed] [Google Scholar]
  11. Descoteaux A., Matlashewski G. Regulation of tumor necrosis factor gene expression and protein synthesis in murine macrophages treated with recombinant tumor necrosis factor. J Immunol. 1990 Aug 1;145(3):846–853. [PubMed] [Google Scholar]
  12. Dickie A. S. Current concepts in the management of infections in bones and joints. Drugs. 1986 Nov;32(5):458–475. doi: 10.2165/00003495-198632050-00004. [DOI] [PubMed] [Google Scholar]
  13. Dodds R. A., Merry K., Littlewood A., Gowen M. Expression of mRNA for IL1 beta, IL6 and TGF beta 1 in developing human bone and cartilage. J Histochem Cytochem. 1994 Jun;42(6):733–744. doi: 10.1177/42.6.8189035. [DOI] [PubMed] [Google Scholar]
  14. Elliott M. J., Maini R. N., Feldmann M., Long-Fox A., Charles P., Katsikis P., Brennan F. M., Walker J., Bijl H., Ghrayeb J. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 1993 Dec;36(12):1681–1690. doi: 10.1002/art.1780361206. [DOI] [PubMed] [Google Scholar]
  15. Garrett I. R., Durie B. G., Nedwin G. E., Gillespie A., Bringman T., Sabatini M., Bertolini D. R., Mundy G. R. Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N Engl J Med. 1987 Aug 27;317(9):526–532. doi: 10.1056/NEJM198708273170902. [DOI] [PubMed] [Google Scholar]
  16. Gillaspy A. F., Hickmon S. G., Skinner R. A., Thomas J. R., Nelson C. L., Smeltzer M. S. Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun. 1995 Sep;63(9):3373–3380. doi: 10.1128/iai.63.9.3373-3380.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gordon J. R., Galli S. J. Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature. 1990 Jul 19;346(6281):274–276. doi: 10.1038/346274a0. [DOI] [PubMed] [Google Scholar]
  18. Gowen M., Chapman K., Littlewood A., Hughes D., Evans D., Russell G. Production of tumor necrosis factor by human osteoblasts is modulated by other cytokines, but not by osteotropic hormones. Endocrinology. 1990 Feb;126(2):1250–1255. doi: 10.1210/endo-126-2-1250. [DOI] [PubMed] [Google Scholar]
  19. Gowen M., MacDonald B. R., Russell R. G. Actions of recombinant human gamma-interferon and tumor necrosis factor alpha on the proliferation and osteoblastic characteristics of human trabecular bone cells in vitro. Arthritis Rheum. 1988 Dec;31(12):1500–1507. doi: 10.1002/art.1780311206. [DOI] [PubMed] [Google Scholar]
  20. Keffer J., Probert L., Cazlaris H., Georgopoulos S., Kaslaris E., Kioussis D., Kollias G. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991 Dec;10(13):4025–4031. doi: 10.1002/j.1460-2075.1991.tb04978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klosterhalfen B., Peters K. M., Tons C., Hauptmann S., Klein C. L., Kirkpatrick C. J. Local and systemic inflammatory mediator release in patients with acute and chronic posttraumatic osteomyelitis. J Trauma. 1996 Mar;40(3):372–378. doi: 10.1097/00005373-199603000-00008. [DOI] [PubMed] [Google Scholar]
  22. König A., Mühlbauer R. C., Fleisch H. Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by urinary [3H]tetracycline excretion from prelabeled mice. J Bone Miner Res. 1988 Dec;3(6):621–627. doi: 10.1002/jbmr.5650030607. [DOI] [PubMed] [Google Scholar]
  23. Littlewood A. J., Aarden L. A., Evans D. B., Russell R. G., Gowen M. Human osteoblastlike cells do not respond to interleukin-6. J Bone Miner Res. 1991 Feb;6(2):141–148. doi: 10.1002/jbmr.5650060207. [DOI] [PubMed] [Google Scholar]
  24. Mundy G. R. Cytokines and growth factors in the regulation of bone remodeling. J Bone Miner Res. 1993 Dec;8 (Suppl 2):S505–S510. doi: 10.1002/jbmr.5650081315. [DOI] [PubMed] [Google Scholar]
  25. Nair S. P., Meghji S., Wilson M., Reddi K., White P., Henderson B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun. 1996 Jul;64(7):2371–2380. doi: 10.1128/iai.64.7.2371-2380.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nair S., Song Y., Meghji S., Reddi K., Harris M., Ross A., Poole S., Wilson M., Henderson B. Surface-associated proteins from Staphylococcus aureus demonstrate potent bone resorbing activity. J Bone Miner Res. 1995 May;10(5):726–734. doi: 10.1002/jbmr.5650100509. [DOI] [PubMed] [Google Scholar]
  27. O'Reilly T., Kunz S., Sande E., Zak O., Sande M. A., Täuber M. G. Relationship between antibiotic concentration in bone and efficacy of treatment of staphylococcal osteomyelitis in rats: azithromycin compared with clindamycin and rifampin. Antimicrob Agents Chemother. 1992 Dec;36(12):2693–2697. doi: 10.1128/aac.36.12.2693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pacifici R., Rifas L., Teitelbaum S., Slatopolsky E., McCracken R., Bergfeld M., Lee W., Avioli L. V., Peck W. A. Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4616–4620. doi: 10.1073/pnas.84.13.4616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rooney P., Bilbe G., Zak O., O'Reilly T. Dexamethasone treatment of lipopolysaccharide-induced meningitis in rabbits that mimics magnification of inflammation following antibiotic therapy. J Med Microbiol. 1995 Jul;43(1):37–44. doi: 10.1099/00222615-43-1-37. [DOI] [PubMed] [Google Scholar]
  30. Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 1986 Aug 7;322(6079):547–549. doi: 10.1038/322547a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sosroseno W., Herminajeng E. The immunopathology of chronic inflammatory periodontal disease. FEMS Immunol Med Microbiol. 1995 Feb;10(3-4):171–180. doi: 10.1111/j.1574-695X.1995.tb00030.x. [DOI] [PubMed] [Google Scholar]
  32. Sprenger H., Bacher M., Rischkowsky E., Bender A., Nain M., Gemsa D. Characterization of a high molecular weight tumor necrosis factor-alpha mRNA in influenza A virus-infected macrophages. J Immunol. 1994 Jan 1;152(1):280–289. [PubMed] [Google Scholar]
  33. Thomson B. M., Mundy G. R., Chambers T. J. Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987 Feb 1;138(3):775–779. [PubMed] [Google Scholar]
  34. Tracey K. J., Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503. doi: 10.1146/annurev.med.45.1.491. [DOI] [PubMed] [Google Scholar]
  35. Wright S. C., Jewett A., Mitsuyasu R., Bonavida B. Spontaneous cytotoxicity and tumor necrosis factor production by peripheral blood monocytes from AIDS patients. J Immunol. 1988 Jul 1;141(1):99–104. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES